869 research outputs found
Nuclear fission: The "onset of dissipation" from a microscopic point of view
Semi-analytical expressions are suggested for the temperature dependence of
those combinations of transport coefficients which govern the fission process.
This is based on experience with numerical calculations within the linear
response approach and the locally harmonic approximation. A reduced version of
the latter is seen to comply with Kramers' simplified picture of fission. It is
argued that for variable inertia his formula has to be generalized, as already
required by the need that for overdamped motion the inertia must not appear at
all. This situation may already occur above T=2 MeV, where the rate is
determined by the Smoluchowski equation. Consequently, comparison with
experimental results do not give information on the effective damping rate, as
often claimed, but on a special combination of local stiffnesses and the
friction coefficient calculated at the barrier.Comment: 31 pages, LaTex, 9 postscript figures; final, more concise version,
accepted for publication in PRC, with new arguments about the T-dependence of
the inertia; e-mail: [email protected]
Spin-Density-Wave Phase Transitions in Quasi-One-Dimensional Dimerized Quarter-Filled Organic Conductors
We have studied spin density wave (SDW) phase transitions in dimerized
quarter-filled Hubbard chains weakly coupled via interchain one-particle
hopping, . It is shown that there exists a critical value of ,
, between the incoherent metal regime () and the
Fermi liquid regime () in the metallic phase above the SDW
transition temperature. By using the 2-loop perturbative renormalization-group
approach together with the random-phase-approximation, we propose a SDW phase
diagram covering both of the regimes. The SDW phase transition from the
incoherent metal phase for is caused by growth of the
intrachain electron-electron umklapp scattering toward low temperatures, which
is regarded as preformation of the Mott gap. We discuss relevance of the
present result to the SDW phase transitions in the quasi-one-dimensional
dimerized quarter-filled organic conductors, (TMTTF)X and (TMTSF)X.Comment: 19 pages, 13 eps figures, uses jpsj.sty, corrected typo in the text
and figures, no changes to the paper, to appear in J. Phys. Soc. Jpn. 68,
No.8 (1999
Superconductivity in the three-leg Hubbard ladder: a Quantum Monte Carlo study
Quantum Monte Carlo method is used to look into the superconductivity in the
three-leg Hubbard ladder. The enhanced correlation for the pairing across the
central and edge chains, which has been predicted in the weak-coupling
renormalization as an effect of coexistence of gapful and gapless spin modes,
is here shown to persist for intermediate interaction strengths.Comment: 10 pages, RevTeX, 3 figures in PostScript file
Persistent current of two-chain Hubbard model with impurities
The interplay between impurities and interactions is studied in the gapless
phase of two-chain Hubbard model in order to see how the screening of impurity
potentials due to repulsive interactions in single-chain model will be changed
by increasing the number of channels. Renormalization group calculations show
that charge stiffness, and hence persistent current, of the two-chain model are
less enhanced by interactions than single chain case.Comment: 4 Pages, RevTeX, No figures, Submitted to PR
Definitive experimental evidence for two-band superconductivity in MgB2
The superconducting gap of MgB2 has been studied by high-resolution
angle-resolved photoemission spectroscopy (ARPES). The momentum(k)-resolving
capability of ARPES enables us to identify the s- and p-orbital derived bands
predicted from band structure calculations and to successfully measure the
superconducting gap on each band. The results show that superconducting gaps
with values of 5.5 meV and 2.2 meV open on the s-band and the p-band,
respectively, but both the gaps close at the bulk transition temperature,
providing a definitive experimental evidence for the two-band superconductivity
in MgB2. The experiments validate the role of k-dependent electron-phonon
coupling as the origin of multiple-gap superconductivity in MgB2.Comment: PDF file onl
Localizations in coupled electronic chains
We studied effects of random potentials and roles of electron-electron
interactions in the gapless phase of coupled Hubbard chains, using a
renormalization group technique. For non-interacting electrons, we obtained the
localization length proportional to the number of chains, as already shown in
the other approaches. For interacting electrons, the localization length is
longer for stronger interactions, that is, the interactions counteract the
random potentials. Accordingly, the localization length is not a simple linear
function of the number of chains. This interaction effect is strongest when
there is only a single chain. We also calculate the effects of interactions and
random potentials on charge stiffness.Comment: no figure, to appear in Phys. Rev.
Spontaneous deformation of the Fermi surface due to strong correlation in the two-dimensional t-J model
Fermi surface of the two-dimensional t-J model is studied using the
variational Monte Carlo method. We study the Gutzwiller projected d-wave
superconducting state with an additional variational parameter t'_v
corresponding to the next-nearest neighbor hopping term. It is found that the
finite t'_v<0 gives the lowest variational energy in the wide range of
hole-doping rates. The obtained momentum distribution function shows that the
Fermi surface deforms spontaneously. It is also shown that the van Hove
singularity is always located very close to the Fermi energy. Using the
Gutzwiller approximation, we show that this spontaneous deformation is due to
the Gutzwiller projection operator or the strong correlation.Comment: 4 pages, 3 eps figures, revte
Superconductivity from Flat Dispersion Designed in Doped Mott Insulators
Routes to enhance superconducting instability are explored for doped Mott
insulators. With the help of insights for criticalities of metal-insulator
transitions, geometrical design of lattice structure is proposed to control the
instability. A guideline is to explicitly make flat band dispersions near the
Fermi level without suppressing two-particle channels. In a one-dimensional
model, numerical studies show that our prescription with finite-ranged hoppings
realizes large enhancement of spin-gap and pairing dominant regions. We also
propose several multi-band systems, where the pairing is driven by intersite
Coulomb repulsion.Comment: 4 pages, to be published in Phys. Rev. Let
High-Field Superconductivity at an Electronic Topological Transition in URhGe
The emergence of superconductivity at high magnetic fields in URhGe is
regarded as a paradigm for new state formation approaching a quantum critical
point. Until now, a divergence of the quasiparticle mass at the metamagnetic
transition was considered essential for superconductivity to survive at
magnetic fields above 30 tesla. Here we report the observation of quantum
oscillations in URhGe revealing a tiny pocket of heavy quasiparticles that
shrinks continuously with increasing magnetic field, and finally disappears at
a topological Fermi surface transition close to or at the metamagnetic field.
The quasiparticle mass decreases and remains finite, implying that the Fermi
velocity vanishes due to the collapse of the Fermi wavevector. This offers a
novel explanation for the re-emergence of superconductivity at extreme magnetic
fields and makes URhGe the first proven example of a material where magnetic
field-tuning of the Fermi surface, rather than quantum criticality alone,
governs quantum phase formation.Comment: A revised version has been accepted for publication in Nature Physic
Magneto-Roton Modes of the Ultra Quantum Crystal: Numerical Study
The Field Induced Spin Density Wave phases observed in quasi-one-dimensional
conductors of the Bechgaard salts family under magnetic field exhibit both Spin
Density Wave order and a Quantized Hall Effect, which may exhibit sign
reversals. The original nature of the condensed phases is evidenced by the
collective mode spectrum. Besides the Goldstone modes, a quasi periodic
structure of Magneto-Roton modes, predicted to exist for a monotonic sequence
of Hall Quantum numbers, is confirmed, and a second mode is shown to exist
within the single particle gap. We present numerical estimates of the
Magneto-Roton mode energies in a generic case of the monotonic sequence. The
mass anisotropy of the collective mode is calculated. We show how differently
the MR spectrum evolves with magnetic field at low and high fields. The
collective mode spectrum should have specific features, in the sign reversed
"Ribault Phase", as compared to modes of the majority sign phases. We
investigate numerically the collective mode in the Ribault Phase.Comment: this paper incorporates material contained in a previous cond-mat
preprint cond-mat/9709210, but cannot be described as a replaced version,
because it contains a significant amount of new material dealing with the
instability line and with the topic of Ribault Phases. It contains 13 figures
(.ps files
- …