20,881 research outputs found
Hierarchical Mass Structure of Fermions in Warped Extra Dimension
The warped bulk standard model has been studied in the Randall-Sundrum
background on interval with the bulk gauge symmetry
. With the assumption of no
large cancellation between the fermion flavor mixing matrices, we present a
simple analytic method to determine the bulk masses of standard model fermions
in the almost universal bulk Yukawa coupling model. We also predict
element of MNS matrix to be near the experimental upper bound when the neutrino
masses are of Dirac type.Comment: 16 page
Inflation by non-minimal coupling
Inflationary scenarios based on simple non-minimal coupling and its
generalizations are studied. Generalizing the form of non-minimal coupling to
"K(phi)R" with an arbitrary function K(phi), we show that the flat potential
still is obtainable when V(phi)/K^2(phi) is asymptotically constant. Very
interestingly, if the ratio of the dimensionless self-coupling constant of the
inflaton field and the non-minimal coupling constant is small the cosmological
observables for general monomial cases are in good agreement with recent
observational data.Comment: 9 pages, 1 figur
Effect of surface roughness on friction behaviour of steel under boundary lubrication
The friction behaviour of grinded and polished surfaces was evaluated by using a reciprocal sliding tester under lubrication with PAO, PAO + ZnDTP and PAO + ZnDTP + MoDTC. Friction coefficients on the smooth surfaces showed higher values compared to those on the rough surfaces. For lubrication incorporating PAO and PAO + ZnDTP + MoDTC, friction coefficients on both the smoothest and the roughest surfaces decreased with sliding time. On the other hand, friction coefficients between these extremes decreased with sliding time. In this paper, the effects of surface roughness on friction behaviour are discussed
Topological String Partition Functions as Polynomials
We investigate the structure of the higher genus topological string
amplitudes on the quintic hypersurface. It is shown that the partition
functions of the higher genus than one can be expressed as polynomials of five
generators. We also compute the explicit polynomial forms of the partition
functions for genus 2, 3, and 4. Moreover, some coefficients are written down
for all genus.Comment: 22 pages, 6 figures. v2:typos correcte
Correlator of Fundamental and Anti-symmetric Wilson Loops in AdS/CFT Correspondence
We study the two circular Wilson loop correlator in which one is of
anti-symmetric representation, while the other is of fundamental representation
in 4-dimensional super Yang-Mills theory. This correlator has a
good AdS dual, which is a system of a D5-brane and a fundamental string. We
calculated the on-shell action of the string, and clarified the Gross-Ooguri
transition in this correlator. Some limiting cases are also examined.Comment: 22 pages, 5 figures, v2: typos corrected, v3: final version in JHE
A note on q-Gaussians and non-Gaussians in statistical mechanics
The sum of sufficiently strongly correlated random variables will not in
general be Gaussian distributed in the limit N\to\infty. We revisit examples of
sums x that have recently been put forward as instances of variables obeying a
q-Gaussian law, that is, one of type (cst)\times[1-(1-q)x^2]^{1/(1-q)}. We show
by explicit calculation that the probability distributions in the examples are
actually analytically different from q-Gaussians, in spite of numerically
resembling them very closely. Although q-Gaussians exhibit many interesting
properties, the examples investigated do not support the idea that they play a
special role as limit distributions of correlated sums.Comment: 17 pages including 3 figures. Introduction and references expande
Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons
Low-energy electron microscopy (LEEM) was used to measure the reflectivity of
low-energy electrons from graphitized SiC(0001). The reflectivity shows
distinct quantized oscillations as a function of the electron energy and
graphite thickness. Conduction bands in thin graphite films form discrete
energy levels whose wave vectors are normal to the surface. Resonance of the
incident electrons with these quantized conduction band states enhances
electrons to transmit through the film into the SiC substrate, resulting in
dips in the reflectivity. The dip positions are well explained using
tight-binding and first-principles calculations. The graphite thickness
distribution can be determined microscopically from LEEM reflectivity
measurements.Comment: 7 pages, 3 figure
A 2.75-Approximation Algorithm for the Unconstrained Traveling Tournament Problem
A 2.75-approximation algorithm is proposed for the unconstrained traveling
tournament problem, which is a variant of the traveling tournament problem. For
the unconstrained traveling tournament problem, this is the first proposal of
an approximation algorithm with a constant approximation ratio. In addition,
the proposed algorithm yields a solution that meets both the no-repeater and
mirrored constraints. Computational experiments show that the algorithm
generates solutions of good quality.Comment: 12 pages, 1 figur
Transition matrix Monte Carlo method for quantum systems
We propose an efficient method for Monte Carlo simulation of quantum lattice
models. Unlike most other quantum Monte Carlo methods, a single run of the
proposed method yields the free energy and the entropy with high precision for
the whole range of temperature. The method is based on several recent findings
in Monte Carlo techniques, such as the loop algorithm and the transition matrix
Monte Carlo method. In particular, we derive an exact relation between the DOS
and the expectation value of the transition probability for quantum systems,
which turns out to be useful in reducing the statistical errors in various
estimates.Comment: 6 pages, 4 figure
- …