458 research outputs found
SUSY Simplified Models at 14, 33, and 100 TeV Proton Colliders
Results are presented for a variety of SUSY Simplified Models at the 14 TeV
LHC as well as a 33 and 100 TeV proton collider. Our focus is on models whose
signals are driven by colored production. We present projections of the upper
limit and discovery reach in the gluino-neutralino (for both light and heavy
flavor decays), squark-neutralino, and gluino-squark Simplified Model planes.
Depending on the model a jets + MET, mono-jet, or same-sign di-lepton search is
applied. The impact of pileup is explored. This study utilizes the Snowmass
backgrounds and combined detector. Assuming 3000 fb^{-1} of integrated
luminosity, a gluino that decays to light flavor quarks can be discovered below
2.3 TeV at the 14 TeV LHC and below 11 TeV at a 100 TeV machine.Comment: 81 pages, 55 figures; v2 journal versio
Recommended from our members
Measurements of Top Properties at the Tevatron
The large data samples of thousands of top events collected at the Tevatron experiments CDF and D{O} allow for a variety of measurements to analyze the properties of the top quark. Guided by the question ''Is the top quark observed at the Tevatron really the top quark of the standard model,'' we present Tevatron analyses studying the top production mechanism including resonant t{bar t} production, the V -A structure of the t {yields} Wb decay vertex, the charge of the top quark, and single-top production via flavor-changing neutral currents
Recommended from our members
The ArgoNeuT experiment
ArgoNeuT is a Liquid Argon Time Projection Chamber neutrino experiment that recently completed its physics run in the NuMI beamline at Fermilab. Along with research and design for future LArTPCs, the experiments goals include performing a number of neutrino and anti-neutrino cross section measurements. Also, ArgoNeuT hopes to further the understanding of the nuclear physics involved in neutrino scattering by characterizing the low energy protons created in such interactions
Recommended from our members
Measurement of the numu Charged Current pi+ to Quasi-Elastic Cross Section Ratio on Mineral Oil in a 0.8 GeV Neutrino Beam
Charged current single pion production (CC{pi}{sup +}) and charged current quasi-elastic scattering (CCQE) are the most abundant interaction types for neutrinos at energies around 1 GeV, a region of great interest to oscillation experiments. The cross-sections for these processes, however, are not well understood in this energy range. This dissertation presents a measurement of the ratio of CC{pi}{sup +} to CCQE cross-sections for muon neutrinos on mineral oil (CH{sub 2}) in the MiniBooNE experiment. The measurement is presented here both with and without corrections for hadronic re-interactions in the target nucleus and is given as a function of neutrino energy in the range 0.4 GeV < E{sub {nu}} < 2.4 GeV. With more than 46,000 CC{pi}{sup +} events collected in MiniBooNE, and with a fractional uncertainty of roughly 11% in the region of highest statistics, this measurement represents a dramatic improvement in statistics and precision over previous CC{pi}{sup +} and CCQE measurements
Recommended from our members
Determining the Extent of Delocalization in Mixed-Valence Iron Dimers using X-ray Absorption Spectroscopy
This study examines the extent of charge delocalization in mixed valence compounds. Understanding the structure of charge delocalization is the first step in understanding the local dynamics of charge transfer. This insight has diverse applications such as the ability to mimic biological reactions and to enhance solar technology. Because of its fast time scale, synchrotron radiation was used to probe the iron K-edge for three organometallic systems. In these complexes, two bridged metal atoms share an effective charge of 5+. In a Robin-Day Class II compound, charge is localized and the two iron atoms have effective oxidation states of 2+ and 3+ respectively. For Class III delocalized compounds each metal center has an effective charge of 2.5+. Class II/III compounds exhibit characteristics of both localized and delocalized systems according to various optical spectroscopies. Synchrotron radiation was used to study charge distribution in these poorly-understood Class II/III intermediate systems. In the limit of absolute localization, spectra of the mixed valence species were expected to be a linear combination of the reduced and oxidized species. For the delocalized case, a linear combination was not expected. These two cases were used as calibration limits to determine the extent of delocalization in the unknown Class II/III compound. Results showed that synchrotron radiation classifies the Class II/III compound as localized. However, data also demonstrated that the linear combination model did not hold as expected and a revised model is necessary to better understand this phenomenon
Recommended from our members
A letter of intent for a neutrino scattering experiment on the booster neutrino meanline: FINeSSE
The experiment described in this Letter of Intent provides a decisive measurement of {Delta}s, the spin of the nucleon carried by strange quarks. This is crucial as, after more than thirty years of study, the spin contribution of strange quarks to the nucleon is still not understood. The interpretation of {Delta}s measurements from inclusive Deep Inelastic Scattering (DIS) experiments using charged leptons suffers from two questionable techniques; an assumption of SU(3)-flavor symmetry, and an extrapolation into unmeasured kinematic regions, both of which provide ample room for uncertain theoretical errors in the results. The results of recent semi-inclusive DIS data from HERMES paint a somewhat different picture of the contribution of strange quarks to the nucleon spin than do the inclusive results, but since HERMES does not make use of either of the above-mentioned techniques, then the results are somewhat incomparable. What is required is a measurement directly probing the spin contribution of the strange quarks in the nucleon. Neutrino experiments provide a theoretically clean and robust method of determining {Delta}s by comparing the neutral current interaction, which is isoscalar plus isovector, to the charged current interaction, which is strictly isovector. A past experiment, E734, performed at Brookhaven National Laboratory, has pioneered this effort. Building on what they have learned, we present an experiment which achieves a measurement to {+-} 0.025 using neutrino scattering, and {+-} 0.04 using anti-neutrino scattering, significantly better than past measurements. The combination of the neutrino and anti-neutrino data, when combined with the results of the parity-violating electron-nucleon scattering data, will produce the most significant result for {Delta}s. This experiment can also measure neutrino cross sections in the energy range required for accelerator-based precision oscillation measurements. Accurate measurements of cross sections have been identified as a priority of the neutrino community, as determined through the APS Multidisciplinary Study on the Future of Neutrino Physics. From the APS report, the Neutrino Matrix makes its recommendations in context of several assumptions regarding the neutrino program, including: ''Determination of the neutrino reaction and production cross sections required for a precise understanding of neutrino oscillation physics and the neutrino astronomy of astrophysical and cosmological sources. Our broad and exacting program of neutrino physics is built upon precise knowledge of how neutrinos interact with matter''. The experiment described here will provide unique information on cross sections of {approx}1 GeV neutrinos, in precisely the range explored by present and future long baseline oscillation programs. Fermi National Accelerator Laboratory is the natural place to perform this experiment. The physics goals proposed here grow the existing program and are necessary ingredients for the next generation oscillation physics measurements in this same energy range. This is a small, cost-effective, and timely experiment which fits well with the growing neutrino program at Fermilab
Avoidance as a strategy of (not) coping: qualitative interviews with carers of Huntington's Disease patients
Peer reviewedPublisher PD
Quantitative nanoscale vortex-imaging using a cryogenic quantum magnetometer
Microscopic studies of superconductors and their vortices play a pivotal role
in our understanding of the mechanisms underlying superconductivity. Local
measurements of penetration depths or magnetic stray-fields enable access to
fundamental aspects of superconductors such as nanoscale variations of
superfluid densities or the symmetry of their order parameter. However,
experimental tools, which offer quantitative, nanoscale magnetometry and
operate over the large range of temperature and magnetic fields relevant to
address many outstanding questions in superconductivity, are still missing.
Here, we demonstrate quantitative, nanoscale magnetic imaging of Pearl vortices
in the cuprate superconductor YBCO, using a scanning quantum sensor in form of
a single Nitrogen-Vacancy (NV) electronic spin in diamond. The sensor-to-sample
distance of ~10nm we achieve allows us to observe striking deviations from the
prevalent monopole approximation in our vortex stray-field images, while we
find excellent quantitative agreement with Pearl's analytic model. Our
experiments yield a non-invasive and unambiguous determination of the system's
local London penetration depth, and are readily extended to higher temperatures
and magnetic fields. These results demonstrate the potential of quantitative
quantum sensors in benchmarking microscopic models of complex electronic
systems and open the door for further exploration of strongly correlated
electron physics using scanning NV magnetometry.Comment: Main text (5 pages, 4 figures) plus supplementary material (5 pages,
6 figures). Comments welcome. Further information under
http://www.quantum-sensing.c
Recommended from our members
Conceptual design of an L-band recirculating superconducting traveling wave accelerating structure for ILC
With this paper, we propose the conceptual design of a traveling wave accelerating structure for a superconducting accelerator. The overall goal is to study a traveling wave (TW) superconducting (SC) accelerating structure for ILC that allows an increased accelerating gradient and, therefore reduction of the length of the collider. The conceptual studies were performed in order to optimize the acceleration structure design by minimizing the surface fields inside the cavity of the structure, to make the design compatible with existing technology, and to determine the maximum achievable gain in the accelerating gradient. The proposed solution considers RF feedback system redirecting the accelerating wave that passed through the superconducting traveling wave acceleration (STWA) section back to the input of the accelerating structure. The STWA structure has more cells per unit length than a TESLA structure but provides an accelerating gradient higher than a TESLA structure, consequently reducing the cost. In this paper, the STWA cell shape optimization, coupler cell design and feedback waveguide solution are considered. We also discuss the field flatness in the superconducting TW structure, the HOM modes and multipactor performance have been studied as well. The proposed TW structure design gives an overall 46% gain over the SW ILC structure if the 10 m long TW structure is employed
- …