201 research outputs found

    Eleven fetal echocardiographic planes using 4-dimensional ultrasound with spatio-temporal image correlation (STIC): a logical approach to fetal heart volume analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Theoretically, a cross-sectional image of any cardiac planes can be obtained from a STIC fetal heart volume dataset. We described a method to display 11 fetal echocardiographic planes from STIC volumes.</p> <p>Methods</p> <p>Fetal heart volume datasets were acquired by transverse acquisition from 200 normal fetuses at 15 to 40 weeks of gestation. Analysis of the volume datasets using the described technique to display 11 echocardiographic planes in the multiplanar display mode were performed offline.</p> <p>Results</p> <p>Volume datasets from 18 fetuses were excluded due to poor image resolution. The mean visualization rates for all echocardiographic planes at 15-17, 18-22, 23-27, 28-32 and 33-40 weeks of gestation fetuses were 85.6% (range 45.2-96.8%, N = 31), 92.9% (range 64.0-100%, N = 64), 93.4% (range 51.4-100%, N = 37), 88.7%(range 54.5-100%, N = 33) and 81.8% (range 23.5-100%, N = 17) respectively.</p> <p>Conclusions</p> <p>Overall, the applied technique can favorably display the pertinent echocardiographic planes. Description of the presented method provides a logical approach to explore the fetal heart volumes.</p

    Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios

    Get PDF
    Purpose: Despite the recognized clinical value of exome-based diagnostics, methods for comprehensive genomic interpretation remain immature. Diagnoses are based on known or presumed pathogenic variants in genes already associated with a similar phenotype. Here, we extend this paradigm by evaluating novel bioinformatics approaches to aid identification of new gene–disease associations. Methods: We analyzed 119 trios to identify both diagnostic genotypes in known genes and candidate genotypes in novel genes. We considered qualifying genotypes based on their population frequency and in silico predicted effects we also characterized the patterns of genotypes enriched among this collection of patients. Results: We obtained a genetic diagnosis for 29 (24%) of our patients. We showed that patients carried an excess of damaging de novo mutations in intolerant genes, particularly those shown to be essential in mice (P = 3.4 × 10−8). This enrichment is only partially explained by mutations found in known disease-causing genes. Conclusion: This work indicates that the application of appropriate bioinformatics analyses to clinical sequence data can also help implicate novel disease genes and suggest expanded phenotypes for known disease genes. These analyses further suggest that some cases resolved by whole-exome sequencing will have direct therapeutic implications

    Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal encephalopathy

    Get PDF
    This is the author accepted manuscript. The final version is available from Oxford University Press via the DOI in this record.The corrigendum to this article is in ORE: http://hdl.handle.net/10871/33588Cellular distribution and dynamics of mitochondria are regulated by several motor proteins and a microtubule network. In neurons, mitochondrial trafficking is crucial because of high energy needs and calcium ion buffering along axons to synapses during neurotransmission. The trafficking kinesin proteins (TRAKs) are well characterized for their role in lysosomal and mitochondrial trafficking in cells, especially neurons. Using whole exome sequencing, we identified homozygous truncating variants in TRAK1 (NM_001042646:c.287-2A > C), in six lethal encephalopathic patients from three unrelated families. The pathogenic variant results in aberrant splicing and significantly reduced gene expression at the RNA and protein levels. In comparison with normal cells, TRAK1-deficient fibroblasts showed irregular mitochondrial distribution, altered mitochondrial motility, reduced mitochondrial membrane potential, and diminished mitochondrial respiration. This study confirms the role of TRAK1 in mitochondrial dynamics and constitutes the first report of this gene in association with a severe neurodevelopmental disorder.D.M.E. and J.K. are supported by the Office of Naval Research (ONR) Grant N000141410538. M.S. is supported by the BBSRC (BB/K006231/1), a Wellcome Trust Institutional Strategic Support Award (WT097835MF, WT105618MA), and a Marie Curie Initial Training Network (ITN) action PerFuMe (316723). M.C.V.M., J.S., H.P., C.F., T.V. and W.A.G. are supported by the NGHRI Intramural Research Program. G.R. is supported by the Kahn Family Foundation and the Israeli Centers of Excellence (I-CORE) Program (ISF grant no. 41/11)

    MiRNA-Mediated Control of HLA-G Expression and Function

    Get PDF
    HLA-G is a non-classical HLA class-Ib molecule expressed mainly by the extravillous cytotrophoblasts (EVT) of the placenta. The expression of HLA-G on these fetal cells protects the EVT cells from immune rejection and is therefore important for a healthy pregnancy. The mechanisms controlling HLA-G expression are largely unknown. Here we demonstrate that miR-148a and miR-152 down-regulate HLA-G expression by binding its 3′UTR and that this down-regulation of HLA-G affects LILRB1 recognition and consequently, abolishes the LILRB1-mediated inhibition of NK cell killing. We further demonstrate that the C/G polymorphism at position +3142 of HLA-G 3′UTR has no effect on the miRNA targeting of HLA-G. We show that in the placenta both miR-148a and miR-152 miRNAs are expressed at relatively low levels, compared to other healthy tissues, and that the mRNA levels of HLA-G are particularly high and we therefore suggest that this might enable the tissue specific expression of HLA-G

    TROP2 Expressed in the Trunk of the Ureteric Duct Regulates Branching Morphogenesis during Kidney Development

    Get PDF
    TROP2, a cell surface protein structurally related to EpCAM, is expressed in various carcinomas, though its function remains largely unknown. We examined the expression of TROP2 and EpCAM in fetal mouse tissues, and found distinct patterns in the ureteric bud of the fetal kidney, which forms a tree-like structure. The tip cells in the ureteric bud proliferate to form branches, whereas the trunk cells differentiate to form a polarized ductal structure. EpCAM was expressed throughout the ureteric bud, whereas TROP2 expression was strongest at the trunk but diminished towards the tips, indicating the distinct cell populations in the ureteric bud. The cells highly expressing TROP2 (TROP2high) were negative for Ki67, a proliferating cell marker, and TROP2 and collagen-I were co-localized to the basal membrane of the trunk cells. TROP2high cells isolated from the fetal kidney failed to attach and spread on collagen-coated plates. Using MDCK cells, a well-established model for studying the branching morphogenesis of the ureteric bud, TROP2 was shown to inhibit cell spreading and motility on collagen-coated plates, and also branching in collagen-gel cultures, which mimic the ureteric bud's microenvironment. These results together suggest that TROP2 modulates the interaction between the cells and matrix and regulates the formation of the ureteric duct by suppressing branching from the trunk during kidney development

    Effect of Low Molecular Weight Heparins (LMWHs) on antiphospholipid Antibodies (aPL)-mediated inhibition of endometrial angiogenesis

    Get PDF
    Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by vascular thrombosis and/or pregnancy morbidity in the presence of circulating antiphospholipid antibodies (aPL). Different pathogenic mechanisms for aPL-mediated pregnancy failure have been proposed. In particular a direct effect of aPL on both maternal and fetal side of the placental tissue has been reported, since their reactivity with \u3b22-glycoprotein I (\u3b22GPI) makes them adhere to trophoblast and human endometrial endothelial cell (HEEC) membranes. \u3b22GPI can be recognized by aPL that, once bound, interfere with both trophoblast functions and with the HEEC differentiation.APS patients can be successfully treated with Low Molecular Weight Heparin (LMWH). Recent reports suggest that LMWH acts through mechanisms alternative to its well known anticoagulant effect, because of its ability to bind \u3b22GPI. In our previous studies, we showed that LMWH is able to reduce the aPL binding to trophoblasts and restore cell invasiveness and differentiation. So far, however, no study has described its effects on endometrial angiogenesis.The aim of our research was to evaluate whether two LMWHs, tinzaparin and enoxaparin, have an effect on the aPL-inhibited endometrial angiogenesis. This prompted us to investigate: (i) in vitro HEEC angiogenesis through a Matrigel assay; (ii) VEGF secretion by ELISA; (iii) matrix metalloproteinase-2 (MMP-2) activity by gelatin zymography; (iv) Nuclear Factor-\u3baB (NF-\u3baB) DNA binding activity by colorimetric assay; (v) STAT-3 activation by a sandwich-ELISA kit. Furthermore, using an in vivo murine model we investigated the LMWHs effects on angiogenesis.We demonstrated that the addition of LMWHs prevents aPL-inhibited HEEC angiogenesis, both in vitro and in vivo, and is able to restore the aPL inhibited NF-\u3baB and/or STAT-3 activity, the VEGF secretion and the MMPs activity.The demonstration of a beneficial role for LMWHs on the aPL-inhibited HEEC angiogenesis might provide additional mechanisms whereby this treatment protects early pregnancy in AP

    Noncoding deletions reveal a gene that is critical for intestinal function.

    Get PDF
    Large-scale genome sequencing is poised to provide a substantial increase in the rate of discovery of disease-associated mutations, but the functional interpretation of such mutations remains challenging. Here we show that deletions of a sequence on human chromosome 16 that we term the intestine-critical region (ICR) cause intractable congenital diarrhoea in infants1,2. Reporter assays in transgenic mice show that the ICR contains a regulatory sequence that activates transcription during the development of the gastrointestinal system. Targeted deletion of the ICR in mice caused symptoms that recapitulated the human condition. Transcriptome analysis revealed that an unannotated open reading frame (Percc1) flanks the regulatory sequence, and the expression of this gene was lost in the developing gut of mice that lacked the ICR. Percc1-knockout mice displayed phenotypes similar to those observed upon ICR deletion in mice and patients, whereas an ICR-driven Percc1 transgene was sufficient to rescue the phenotypes found in mice that lacked the ICR. Together, our results identify a gene that is critical for intestinal function and underscore the need for targeted in vivo studies to interpret the growing number of clinical genetic findings that do not affect known protein-coding genes
    corecore