609 research outputs found

    Quantum amplification effect in a horizon fluctuations

    Full text link
    The appearance of a few unevenly- spaced bright flashes of light on top of Hawking radiation is the sign of the amplification effect in black hole horizon fluctuations. Previous studies on this problem suffer from the lack of considering all emitted photons in the theoretical spectroscopy of these fluctuations. In this paper, we include all of the physical transition weights and present a consistent intensity formula. This modifies a black hole radiation pattern.Comment: 6 pages, 2 figure

    Primordial Black Hole: Mass and Angular Momentum Evolution

    Full text link
    The evolution of the primordial low mass black hole (PBH) in hot universe is considered. Increase of mass and decrease of PBH spin due to the accretion of radiation dominated matter are estimated with using of results of numerical simulation of PBH formation and approximate relations for accretion to a rotating black hole.Comment: Gravitation and Cosmology, accepted, 3 pages, Talk presented at the russian summer school-seminar "Modern theoretical problems of gravitation and cosmology" (GRACOS-2007), September 9-16, 2007, Kazan-Yalchik, Russi

    On Quantum Nature of Black-Hole Spacetime: A Possible New Source of Intense Radiation

    Get PDF
    Atoms and the planets acquire their stability from the quantum mechanical incompatibility of the position and momentum measurements. This incompatibility is expressed by the fundamental commutator [x, p_x]=i hbar, or equivalently, via the Heisenberg's uncertainty principle Delta x Delta p_x sim hbar. A further stability-related phenomenon where the quantum realm plays a dramatic role is the collapse of certain stars into white dwarfs and neutron stars. Here, an intervention of the Pauli exclusion principle, via the fermionic degenerate pressure, stops the gravitational collapse. However, by the neutron-star stage the standard quantum realm runs dry. One is left with the problematic collapse of a black hole. This essay is devoted to a concrete argument on why the black-hole spacetime itself should exhibit a quantum nature. The proposed quantum aspect of spacetime is shown to prevent the general-relativistic dictated problematic collapse. The quantum nature of black-hole spacetime is deciphered from a recent result on the universal equal-area spacing [=lambda_P^2 4 ln(3)] for black holes. In one interpretation of the emergent picture, an astrophysical black hole can fluctuate to sqrt{pi/ln(3)} approx 1.7 times its classical size, and thus allow radiation and matter to escape to the outside observers. These fluctuations I conjecture provide a new source, perhaps beyond Hawking radiation, of intense radiation from astrophysical black holes and may be the primary source of observed radiation from those galactic cores what carry black hole(s). The presented interpretation may be used as a criterion to choose black holes from black hole candidates.Comment: This essay received an "honorable mention" in the 1999 Essay Competition of the Gravity Research Foundation - Ed. Int. J. Mod. Phys. D (1999, in press). For Joseph Knech

    Field-induced axion emission via process e+eae^+ e^- \to a in plasma

    Get PDF
    The annihilation into axion e+eae^+ e^- \to a is investigated in a plasma and an external magnetic field. This process via a plasmon intermediate state has a resonant character at a particular energy of the emitted axion. The emissivity by e+eae^+ e^- \to a is compared with the axion cyclotron emissivity.Comment: 8 pages, latex, 4 PS figure

    Stability of rotating supermassive stars in presence of dark matter background

    Get PDF
    Stability of supermassive stars embedded in hot dark matter is investigated on the base of the energetic method. Stability effect of dark mater is compared with rotational stabilization and preference of the last factor is advocated.Comment: 11 pages, 1 figure. ApJ, 1998 (accepted

    Dynamic stabilization of non-spherical bodies against unlimited collapse

    Full text link
    We solve equations, describing in a simplified way the newtonian dynamics of a selfgravitating nonrotating spheroidal body after loss of stability. We find that contraction to a singularity happens only in a pure spherical collapse, and deviations from the spherical symmetry stop the contraction by the stabilising action of nonlinear nonspherical oscillations. A real collapse happens after damping of the oscillations due to energy losses, shock wave formation or viscosity. Detailed analysis of the nonlinear oscillations is performed using a Poincar\'{e} map construction. Regions of regular and chaotic oscillations are localized on this map.Comment: MNRAS, accepted, 7 pages, 9 figure

    Chern-Simons Correlations on (2+1)D Lattice

    Full text link
    We have computed the contribution of zero modes to the value of the number of particles in the model of discrete (2+1)-dimensional nonlinear Schr\"odinger equation. It is shown for the first time that in the region of small values of the Chern-Simons coefficient k there exists a universal attraction between field configurations. For k=2 this phenomenon may be a dynamic origin of the semion pairing in high temperature superconducting state of planar systems.Comment: 9 pages, 2 figures Sabj-class: Strongly Correlated Electron
    corecore