40 research outputs found

    Inflationary Attractor in Braneworld Scenario

    Full text link
    We demonstrate the attractor behavior of inflation driven by a scalar field or a tachyon field in the context of recently proposed four-dimensional effective gravity induced on the world-volume of a three-brane in five-dimensional Einstein gravity, and we obtain a set of exact inflationary solutions. Phase portraits indicate that an initial kinetic term decays rapidly and it does not prevent the onset of inflation. The trajectories more rapidly reach the slow-roll curve than in the standard cosmology.Comment: 7 pages, 8 figures, RevTeX, to appear in Phys. Rev. D69 (2004

    The Primordial Perturbation Spectrum from Various Expanding and Contracting Phases

    Full text link
    In this paper, focusing on the case of single scalar field, we discuss various expanding and contracting phases generating primordial perturbations, and study the relation between the primordial perturbation spectrum from these phases and the parameter w of state equation in details. Furthermore, we offer an interesting classification for the primordial perturbation spectrum from various phases, which may have important implications for building an early universe scenario embedded in possible high energy theories.Comment: 5 pages, 3 eps figure

    Dynamics of Tachyon and Phantom Field beyond the Inverse Square Potentials

    Full text link
    We investigate the cosmological evolution of the tachyon and phantom-tachyon scalar field by considering the potential parameter Γ\Gamma(=VV"V2=\frac{V V"}{V'^2}) as a function of another potential parameter λ\lambda(=VκV3/2=\frac{V'}{\kappa V^{3/2}}), which correspondingly extends the analysis of the evolution of our universe from two-dimensional autonomous dynamical system to the three-dimension. It allows us to investigate the more general situation where the potential is not restricted to inverse square potential and .One result is that, apart from the inverse square potential, there are a large number of potentials which can give the scaling and dominant solution when the function Γ(λ)\Gamma(\lambda) equals 3/23/2 for one or some values of λ\lambda_{*} as well as the parameter λ\lambda_{*} satisfies condition Eq.(18) or Eq.(19). We also find that for a class of different potentials the dynamics evolution of the universe are actually the same and therefore undistinguishable.Comment: 8 pages, no figure, accepted by The European Physical Journal C(2010), online first, http://www.springerlink.com/content/323417h708gun5g8/?p=dd373adf23b84743b523a3fa249d51c7&pi=

    Extremal black holes in the Ho\v{r}ava-Lifshitz gravity

    Full text link
    We study the near-horizon geometry of extremal black holes in the z=3z=3 Ho\v{r}ava-Lifshitz gravity with a flow parameter λ\lambda. For λ>1/2\lambda>1/2, near-horizon geometry of extremal black holes are AdS2×S2_2 \times S^2 with different radii, depending on the (modified) Ho\v{r}ava-Lifshitz gravity. For 1/3λ1/21/3\le \lambda \le 1/2, the radius v2v_2 of S2S^2 is negative, which means that the near-horizon geometry is ill-defined and the corresponding Bekenstein-Hawking entropy is zero. We show explicitly that the entropy function approach does not work for obtaining the Bekenstein-Hawking entropy of extremal black holes.Comment: 18 pages, v2:some points on Lifshitz black holes claified, v3: version to appear in EJP

    Thermodynamics of Ho\v{r}ava-Lifshitz black holes

    Full text link
    We study black holes in the Ho\v{r}ava-Lifshitz gravity with a parameter λ\lambda. For 1/3λ<31/3 \le \lambda < 3, the black holes behave the Lifshitz black holes with dynamical exponent 030 3, the black holes behave the Reissner-Nordstr\"om type black hole in asymptotically flat spacetimes. Hence, these all are quite different from the Schwarzschild-AdS black hole of Einstein gravity. The temperature, mass, entropy, and heat capacity are derived for investigating thermodynamic properties of these black holes.Comment: 12 pages, 5 figures, v2:substantial improved version to make connection to Lifshitz black holes and Reissner-Norstr\"om type black holes,v3: version to appear in EPJ

    The Black Hole and Cosmological Solutions in IR modified Horava Gravity

    Full text link
    Recently Horava proposed a renormalizable gravity theory in four dimensions which reduces to Einstein gravity with a non-vanishing cosmological constant in IR but with improved UV behaviors. Here, I study an IR modification which breaks "softly" the detailed balance condition in Horava model and allows the asymptotically flat limit as well. I obtain the black hole and cosmological solutions for "arbitrary" cosmological constant that represent the analogs of the standard Schwartzschild-(A)dS solutions which can be asymptotically (A)dS as well as flat and I discuss some thermodynamical properties. I also obtain solutions for FRW metric with an arbitrary cosmological constant. I study its implication to the dark energy and find that it seems to be consistent with current observational data.Comment: Footnote 5 about the the very meaning of the horizons and Hawking temperature is added; Accepted in JHE

    Caustic avoidance in Horava-Lifshitz gravity

    Full text link
    There are at least four versions of Horava-Lishitz gravity in the literature. We consider the version without the detailed balance condition with the projectability condition and address one aspect of the theory: avoidance of caustics for constant time hypersurfaces. We show that there is no caustic with plane symmetry in the absence of matter source if \lambda\ne 1. If \lambda=1 is a stable IR fixed point of the renormalization group flow then \lambda is expected to deviate from 1 near would-be caustics, where the extrinsic curvature increases and high-energy corrections become important. Therefore, the absence of caustics with \lambda\ne 1 implies that caustics cannot form with this symmetry in the absence of matter source. We argue that inclusion of matter source will not change the conclusion. We also argue that caustics with codimension higher than one will not form because of repulsive gravity generated by nonlinear higher curvature terms. These arguments support our conjecture that there is no caustic for constant time hypersurfaces. Finally, we discuss implications to the recently proposed scenario of ``dark matter as integration constant''.Comment: 19 pages; extended to general z \geq 3, typos corrected (v2); version accepted for publication in JCAP (v3

    Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy

    Full text link
    The unifying approach to early-time and late-time universe based on phantom cosmology is proposed. We consider gravity-scalar system which contains usual potential and scalar coupling function in front of kinetic term. As a result, the possibility of phantom-non-phantom transition appears in such a way that universe could have effectively phantom equation of state at early time as well as at late time. In fact, the oscillating universe may have several phantom and non-phantom phases. As a second model we suggest generalized holographic dark energy where infrared cutoff is identified with combination of FRW parameters: Hubble constant, particle and future horizons, cosmological constant and universe life-time (if finite). Depending on the specific choice of the model the number of interesting effects occur: the possibility to solve the coincidence problem, crossing of phantom divide and unification of early-time inflationary and late-time accelerating phantom universe. The bound for holographic entropy which decreases in phantom era is also discussed.Comment: 13 pages, clarifications/refs added, to match with published versio

    A Note on Inflation with Tachyon Rolling on the Gauss-Bonnet Brane

    Full text link
    In this paper we study the tachyonic inflation in brane world cosmology with Gauss-Bonnet term in the bulk. We obtain the exact solution of slow roll equations in case of exponential potential. We attempt to implement the proposal of Lidsey and Nunes, astro-ph/0303168, for the tachyon condensate rolling on the Gauss-Bonnet brane and discuss the difficulties associated with the proposal.Comment: RevTex4, 5 pages, no figures, Minor clarifications added and references updated, To appear in PR

    S-matrix elements and off-shell tachyon action with non-abelian gauge symmetry

    Full text link
    We propose that there is a unique expansion for the string theory S-matrix elements of tachyons that corresponds to non-abelian tachyon action. For those S-matrix elements which, in their expansion, there are the Feynman amplitudes resulting from the non-abelian kinetic term, we give a prescription on how to find the expansion. The gauge invariant action is an α\alpha' expanded action, and the tachyon mass mm which appears as coefficient of many different couplings, is arbitrary. We then analyze in details the S-matrix element of four tachyons and the S-matrix element of two tachyons and two gauge fields, in both bosonic and superstring theories, in favor of this proposal. In the superstring theory, the leading terms of the non-abelian gauge invariant couplings are in agreement with the symmetrised trace of the direct non-abelian generalization of the tachyonic Born-Infeld action in which the tachyon potential is consistent with V(T)=eπαm2T2V(T)=e^{\pi\alpha' m^2T^2}. In the bosonic theory, on the other hand, the leading terms are those appear in superstring case as well as some other gauge invariant couplings which spoils the symmetrised trace prescription. These latter terms are zero in the abelian case.Comment: Latex, 27 pages, no figures,v4:change the introduction section, add some notes to clarify the idea, add reference
    corecore