28 research outputs found

    Drude model and Lifshitz formula

    Full text link
    Since nearly 10 years, it is known that inserting the permittivity of the Drude model into the Lifshitz formula for free energy causes a violation of the third law of thermodynamics. In this paper we show that the standard Matsubara formulation for free energy contains a contribution that is non-perturbative in the relaxation parameter. We argue that the correct formula must have a perturbative expansion and conclude that the standard Matsubara formulation with the permittivity of the Drude model inserted is not correct. We trace the non-perturbative contribution in the complex frequency plane, where it shows up as a self-intersection or a bifurcation of the integration path.Comment: accepted for publication in EPJ

    Disordered Josephson Junctions of d-Wave Superconductors

    Get PDF
    We study the Josephson effect between weakly coupled d-wave superconductors within the quasiclassical theory, in particular, the influence of interface roughness on the current-phase relation and the critical current of mirror junctions and 4545^\circ asymmetric junctions. For mirror junctions the temperature dependence of the critical current is non-monotonic in the limit of low roughness, but monotonic for very rough interfaces. For 4545^\circ asymmetric junctions with a linear dimension much larger than the superconducting coherence length we find a sin(2ϕ)\sin(2\phi)-like current-phase relation, whereas for contacts on the scale of the coherence length or smaller the usual sinϕ\sin\phi-like behavior is observed. Our results compare well with recent experimental observations.Comment: 10 pages, 12 figures; accepted for publication in Phys. Rev.

    Effect of diffusive boundaries on surface superconductivity in unconventional superconductors

    Full text link
    Boundary conditions for a superconducting order parameter at a diffusive scattering boundary are derived from microscopic theory. The results indicate that for all but isotropic gap functions the diffusive boundary almost completely suppresses surface superconductivity in the Ginzburg-Landau regime. This indicates that in anisotropic superconductors surface superconductivity can only be observed for surface normals along high symmetry directions where atomically clean surfaces can be cleaved.Comment: Latex File, 12 pages, 2 Postscript figures, to appear in Phys. Rev. B (June 1 1996

    Interface effects on the shot noise in normal metal- d-wave superconductor Junctions

    Full text link
    The current fluctuation in normal metal / d-wave superconductor junctions are studied for various orientation of the crystal by taking account of the spatial variation of the pair potentials. Not only the zero-energy Andreev bound states (ZES) but also the non-zero energy Andreev bound states influence on the properties of differential shot noise. At the tunneling limit, the noise power to current ratio at zero voltage becomes 0, once the ZES are formed at the interface. Under the presence of a subdominant s-wave component at the interface which breaks time-reversal symmetry, the ratio becomes 4eComment: 13 pages, 3 figure

    Theory of c-axis Josephson tunneling in d-wave superconductors

    Full text link
    The temperature and angular dependence of the c-axis Josephson current and the superfluid density in layered d-wave superconductors are studied within the framework of an extended Ambegaokar-Baratoff formalism. In particular, the effects of angle-dependent tunneling matrix elements and Andreev scattering at grain boundaries are taken into account. These lead to strong corrections of the low-temperature behavior of the plasma frequency and the Josephson current. Recent c-axis measurements on the cuprate high-temperature superconductors HgBa_2CaCu_{1+\delta} and Bi_2Sr_2CaCu_2O_{8+\delta} can therefore be interpreted to be consistent with a d-wave order parameter.Comment: Revtex, 4 pages with 4 eps figures, to appear in PRB R

    Disappearance of Ensemble-Averaged Josephson Current in Dirty SNS Junctions of d-wave Superconductors

    Full text link
    We discuss the Josephson current in superconductor / dirty normal conductor / superconductor junctions, where the superconductors have dx2y2d_{x^2-y^2} pairing symmetry. The low-temperature behavior of the Josephson current depends on the orientation angle between the crystalline axis and the normal of the junction interface. We show that the ensemble-averaged Josephson current vanishes when the orientation angle is π/4\pi/4 and the normal conductor is in the diffusive transport regime. The dx2y2d_{x^2-y^2}-wave pairing symmetry is responsible for this fact.Comment: 8 pages, 5 figure

    Influence of impurity scattering on tunneling conductance in normal metal- d -wave superconductor junctions

    Full text link
    Tunneling conductance spectra between a normal metal / d-wave superconductor junction under the presence of bulk impurities in the superconductor are studied. The quasiclassical theory has been applied to calculate the spatial variation of the pair potential and the effect of impurity scattering has been introduced by t-matrix approximation. The magnitude of a subdominant s-wave component at the interface is shown to robust against the impurity scattering while that for a subdominant dxyd_{xy}-wave component is largely suppressed with the increase of the impurity scattering rate. The zero-bias conductance peak due to the zero-energy Andreev bound states is significantly broadened for the case of Born limit impurity compared with that of unitary limit impurity.Comment: 14 pages, 5 figure

    Josephson current in s-wave superconductor / Sr_2RuO_4 junctions

    Full text link
    The Josephson current between an s-wave and a spin-triplet superconductor Sr2_2RuO4_4 (SRO) is studied theoretically. In spin-singlet / spin-triplet superconductor junctions, there is no Josephson current proportional to sinϕ\sin \phi in the absence of the spin-flip scattering near junction interfaces, where ϕ\phi is a phase-difference across junctions. Thus a dominant term of the Josephson current is proportional to sin2ϕ\sin 2\phi . The spin-orbit scattering at the interfaces gives rise to the Josephson current proportional to cosϕ\cos\phi, which is a direct consequence of the chiral paring symmetry in SRO

    Local and macroscopic tunneling spectroscopy of Y(1-x)CaxBa2Cu3O(7-d) films: evidence for a doping dependent is or idxy component in the order parameter

    Full text link
    Tunneling spectroscopy of epitaxial (110) Y1-xCaxBa2Cu3O7-d films reveals a doping dependent transition from pure d(x2-y2) to d(x2-y2)+is or d(x2-y2)+idxy order parameter. The subdominant (is or idxy) component manifests itself in a splitting of the zero bias conductance peak and the appearance of subgap structures. The splitting is seen in the overdoped samples, increases systematically with doping, and is found to be an inherent property of the overdoped films. It was observed in both local tunnel junctions, using scanning tunneling microscopy (STM), and in macroscopic planar junctions, for films prepared by either RF sputtering or laser ablation. The STM measurements exhibit fairly uniform splitting size in [110] oriented areas on the order of 10 nm2 but vary from area to area, indicating some doping inhomogeneity. U and V-shaped gaps were also observed, with good correspondence to the local faceting, a manifestation of the dominant d-wave order parameter

    Josephson current in superconductor-ferromagnet structures with a nonhomogeneous magnetization

    Full text link
    We calculate the dc Josephson current IJI_J for two types of superconductor-ferromagnet (S/F) Josephson junctions. The junction of the first type is a S/F/S junction. On the basis of the Eilenberger equation, the Josephson current is calculated for an arbitrary impurity concentration. If hτ1% h\tau\ll1 the expression for the Josephson critical current IcI_c is reduced to that which can be obtained from the Usadel equation (hh is the exchange energy, τ\tau is the momentum relaxation time). In the opposite limit hτ1h\tau\gg1 the superconducting condensate oscillates with period % v_F/h and penetrates into the F region over distances of the order of the mean free path ll. For this kind of junctions we also calculate IJI_J in the case when the F layer presents a nonhomogeneous (spiral) magnetic structure with the period 2π/Q2\pi /Q. It is shown that for not too low temperatures, the π\pi-state which occurs in the case of a homogeneous magnetization (Q=0) may disappear even at small values of QQ. In this nonhomogeneous case, the superconducting condensate has a nonzero triplet component and can penetrate into the F layer over a long distance of the order of ξT=\xi_{T}=% \sqrt{D/2\pi T}. The junction of the second type consists of two S/F bilayers separated by a thin insulating film. It is shown that the critical Josephson current IcI_{c} depends on the relative orientation of the effective exchange field hh of the bilayers. In the case of an antiparallel orientation, IcI_{c} increases with increasing hh. We establish also that in the F film deposited on a superconductor, the Meissner current created by the internal magnetic field may be both diamagnetic or paramagnetic.Comment: 13 pages, 11 figures. To be published in Phys. Rev.
    corecore