3 research outputs found

    Bethe-Sommerfeld conjecture for periodic operators with strong perturbations

    Full text link
    We consider a periodic self-adjoint pseudo-differential operator H=(−Δ)m+BH=(-\Delta)^m+B, m>0m>0, in Rd\R^d which satisfies the following conditions: (i) the symbol of BB is smooth in \bx, and (ii) the perturbation BB has order less than 2m2m. Under these assumptions, we prove that the spectrum of HH contains a half-line. This, in particular implies the Bethe-Sommerfeld Conjecture for the Schr\"odinger operator with a periodic magnetic potential in all dimensions.Comment: 61 page

    Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic pseudo-differential operators

    Full text link
    We obtain a complete asymptotic expansion of the integrated density of states of operators of the form H =(-\Delta)^w +B in R^d. Here w >0, and B belongs to a wide class of almost-periodic self-adjoint pseudo-differential operators of order less than 2w. In particular, we obtain such an expansion for magnetic Schr\"odinger operators with either smooth periodic or generic almost-periodic coefficients.Comment: 47 pages. arXiv admin note: text overlap with arXiv:1004.293
    corecore