13 research outputs found

    Adaptive Finite Element Methods with Inexact Solvers for the Nonlinear Poisson-Boltzmann Equation

    Full text link
    In this article we study adaptive finite element methods (AFEM) with inexact solvers for a class of semilinear elliptic interface problems. We are particularly interested in nonlinear problems with discontinuous diffusion coefficients, such as the nonlinear Poisson-Boltzmann equation and its regularizations. The algorithm we study consists of the standard SOLVE-ESTIMATE-MARK-REFINE procedure common to many adaptive finite element algorithms, but where the SOLVE step involves only a full solve on the coarsest level, and the remaining levels involve only single Newton updates to the previous approximate solution. We summarize a recently developed AFEM convergence theory for inexact solvers, and present a sequence of numerical experiments that give evidence that the theory does in fact predict the contraction properties of AFEM with inexact solvers. The various routines used are all designed to maintain a linear-time computational complexity.Comment: Submitted to DD20 Proceeding

    Andrographolide Inhibits PI3K/AKT-Dependent NOX2 and iNOS Expression Protecting Mice against Hypoxia/Ischemia-Induced Oxidative Brain Injury

    Get PDF
    This study aimed to explore the mechanisms by which andrographolide protects against hypoxia-induced oxidative/nitrosative brain injury provoked by cerebral ischemic/reperfusion (CI/R) injury in mice. Hypoxia in vitro was modeled using oxygen-glucose deprivation (OGD) followed by reoxygenation of BV-2 microglial cells. Our results showed that treatment of mice that have undergone CI/R injury with andrographolide (10-100 mu g/kg, i.v.) at 1 h after hypoxia ameliorated CI/R-induced oxidative/nitrosative stress, brain infarction, and neurological deficits in the mice, and enhanced their survival rate. CI/R induced a remarkable production in the mouse brains of reactive oxygen species (ROS) and a significant increase in protein nitrosylation; this primarily resulted from enhanced expression of NADPH oxidase 2 (NOX2), inducible nitric oxide synthase (iNOS), and the infiltration of CD11b cells due to activation of nuclear factor-kappa B (NF-kappa B) and hypoxia-inducible factor 1-alpha (HIF-1 alpha). All these changes were significantly diminished by andrographolide. In BV-2 cells, OGD induced ROS and nitric oxide production by upregulating NOX2 and iNOS via the phosphatidylinositol-3-kinase (PI3K)/AKT-dependent NF-kappa B and HIF-1 alpha pathways, and these changes were suppressed by andrographolide and LY294002. Our results indicate that andrographolide reduces NOX2 and iNOS expression possibly by impairing PI3K/AKT-dependent NF-kappa B and HIF-1 alpha activation. This compromises microglial activation, which then, in turn, mediates andrographolide's protective effect in the CI/R mice

    Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice

    No full text
    Melatonin has many protective effects against ischemic stroke, but the underlying neuroprotective mechanisms are not fully understood. Our aim was to explore the relationship between melatonin's neuroprotective effects and activation of the MT2 melatonin receptor in a murine ischemic-stroke model. Male ICR mice were subjected to a transient middle cerebral ischemic/reperfusional injury, and melatonin (5 and 10 mg/kg, ip) was administrated once daily starting 2 h after ischemia. More than 80% of the mice died within 5 days after stroke without treatment. Melatonin treatment significantly improved the survival rates and neural functioning with modestly prolonged life span of the stroke mice by preserving blood-brain barrier (BBB) integrity via a reduction in the enormous amount of stroke-induced free radical production and significant gp91(phox) cell infiltration. These protective effects of melatonin were reversed by pretreatment with MT2 melatonin receptor antagonists (4-phenyl-2-propionamidotetralin (4P-PDOT) and luzindole). Moreover, treatment with melatonin after stroke dramatically enhanced endogenous neurogenesis (doublecortin positive) and cell proliferation (ki67 positive) in the pen-infarct regions. Most ki67-positive cells were nestin-positive and NG2-positive neural stem/progenitor cells that coexpressed two neurodevelopmental proteins (adam11 and adamts20) and the MT2 melatonin receptor. RT-PCR revealed that the gene expression levels of doublecortin, ki67, adamts20, and adam11 are markedly reduced by stroke, but are restored by melatonin treatment; furthermore, pretreatment with 4P-PDOT and luzindole antagonized melatonin's restorative effect. Our results support the hypothesis that melatonin is able to protect mice against stroke by activating MT2 melatonin receptors, which reduces oxidative/inflammatory stress. This results in the preservation of BBB integrity and enhances endogenous neurogenesis by upregulating neurodevelopmental gene/protein expression. (c) 2012 Elsevier Inc. All rights reserved

    Synthesis and characterization of amphiphilic graft copolymers with poly(ethylene glycol) and cholesterol side chains

    No full text
    Amphiphilic graft copolymers comprising monomeric units of methoxy poly(ethylene glycol) (mPEG)-acrylate, 2-hydroxyethyl methacrylate (HEMA)-cholesterol conjugates and HEMA were synthesized and their properties characterized. The value of the critical micelle concentration (CMC) for these copolymers is linearly proportional to the ratio of the number of mPEG-acrylates to that of the HEMA-cholesterol conjugates per macromolecule (N-PEG/N-c), which is the most important parameter which influences the formation of polymeric micelles. The latter show excellent colloidal stability and their sizes decrease with increasing CMC. Based on the quenching of pyrene fluorescence, the relatively high levels of the loading capacity of pyrene are attributed to the elevated hydrophobicity of the micelle core. The loading capacity of pyrene decreases with increasing CMC. The weight-average partition coefficient for pyrene in polymeric micelles increases with increasing polymer concentration because more micelles are available for accommodating pyrene. (C) 2004 Society of Chemical Industry

    Preventive effect of silymarin in cerebral ischemia-reperfusion-induced brain injury in rats possibly through impairing NF-kappa B and STAT-1 activation

    No full text
    Silymarin and silibinin are bioactive components isolated from Silybum marianum. They have been reported to exhibit anti-oxidative and anti-inflammatory effects. Many studies revealed that drugs with potent anti-inflammatory potential can protect animals against inflammation-associated neurodegenerative disease, e.g., stroke. In this current work we established an animal model of acute ischemic stroke injury by inducing cerebral ischemic/reperfusion (CUR) in rats to elucidate whether silymarin or silibinin can protect animals from CUR injury. Pretreatment with silymarin, but not silibinin, dose-dependently (1-10 mu g/kg, i.v.) reduced CUR-induced brain infarction by 16-40% and improved neurological deficits in rats with a stroke. Elevated pathophysiological biomarkers for CUR-induced brain injury, including lipid peroxidation, protein nitrosylation, and oxidative stress, were all reduced by silymarin. In addition, expression of inflammation-associated proteins (e.g., inducible nitric oxide synthase, cyclooxygenase-2 and myeloperoxidase), and transcriptional factors (e.g., nuclear factor (NF)-kappa B and signal transducer and activator of transcription (STAT)-1), as well as production of proinflammatory cytokine (e.g., interleukin-1 beta and tumor necrosis factor-alpha) was all significantly prevented by silymarin. Furthermore, an in vitro study on microglial BV2 cells showed that silymarin could inhibit nitric oxide and superoxide anion production, possibly by interfering with NF-kappa B nuclear translocation/activation. Likewise, silymarin pretreatment also inhibited I kappa B-alpha degradation and NF-kappa B nuclear translocation in brain tissues of ischemic rats. Our results reveal that silymarin, but not its active component silibinin, protected rats against CUR-induced stroke injury by amelioration of the oxidative and nitrosative stresses and inflammation-mediated tissue injury through impeding the activation of proinflammatory transcription factors (e.g., NF-kappa B and STAT-1) in the upregulation of proinflammatory proteins and cytokines in stroke-damaged sites. In conclusion, silymarin displays beneficial effects of preventing inflammation-related neurodegenerative disease, e.g., stroke, which needs further investigation and clinical evidences. (C) 2010 Elsevier GmbH. All rights reserved

    Foodborne disease outbreaks caused by sucrose-nonfermenting and beta-galactosidase-deficient variants of Vibrio cholerae

    No full text
    We reported four foodborne disease outbreaks in Taiwan caused by sucrose-nonfermenting and by beta-galactosidase-deficient variants of non-O1, non-O139 Vibrio cholerae. The sucrose-nonfermenting vibrios collected from three outbreaks were biochemically identified to be V mimicus and the beta-galactosidase-deficient vibrios from an Outbreak to be V alginolyticus. However, molecular methods including DNA-DNA hybridization, fatty acid profile analysis, and sequence analysis of 16S rRNA, oriC, pyrH, recA, and rpoA indicated that these vibrios should be V cholerae. These V cholerae variants carried two hemolysin genes, hlyA and hlx, but contained neither cholera toxin gene, ctx, V mimicus hemolysin gene, vmh, nor then-no-directed hemolysin, tdh. The sucrose-nonfermenting variants of V cholerae shared a high level of genetic relatedness; they could derive from a common clone. In our record from 1995 to date, this was the first time that V cholerae variants were discovered as etiologic agents for foodborne disease outbreaks in Taiwan. (c) 2007 Elsevier B.V. All rights reserved

    Paenibacillus taichungensis sp nov., from soil in Taiwan

    No full text
    Among a large collection of Taiwanese soil isolates, a novel Gram-variable, rod-shaped, motile, endospore-forming bacterial strain, strain V10537(T), was subjected to a polyphasic study including 16S rRNA and gyrB gene sequence analysis, DNA-DNA hybridization experiments, cell wall peptidoglycan type, cellular fatty acid composition analysis and comparative phenotypic characterization. 16S rRNA gene sequence analysis indicated that the organism belonged to the genus Paenibacillus. Strain V10537(T) possessed meso-diaminopimelic acid as the diagnostic diamino acid of the peptidoglycan. It contained menaquinone MK-7 as the predominant isoprenoid quinone and anteiso-C(15:0),0 (53.6%) and C(16:0) (19.0%) as the major fatty acids. Phylogenetically, the most closely related species to strain V10537(T) were Paenibacillus pabuli, Paenibacillus xylanilyticus, Paenibaciflus amylolyticus, Paenibacillus barcinonensis and Paenibacillus illinoisensis, with 16S rRNA gene sequence similarities of 99.5, 98.8, 98.3, 98.2 and 98.1 % to the respective type strains. The gyrB gene sequence similarities between strain V10537(T) and these strains were 76.9-85.0%. DNA-DNA hybridization experiments showed levels of relatedness of 8.5-45.6 % between strain V10537(T) and these strains. The DNA G + C content of strain V10537(T) was 46.7 mol%. Strain V10537(T) was clearly distinguishable from other Paenibacillus species and thus represents a novel species of the genus Paenibacillus, for which the name Paenibacillus taichungensis sp. nov. is proposed. The type strain is V10537(T) (=BCRC 17757(T) = DSM 19942(T))

    A rice gene activation/knockout mutant resource for high throughput functional genomics

    No full text
    Using transfer DNA (T-DNA) with functions of gene trap and gene knockout and activation tagging, a mutant population containing 55,000 lines was generated. Approximately 81% of this population carries 1-2 T-DNA copies per line, and the retrotransposon Tos17 was mostly inactive in this population during tissue culture. A total of 11,992 flanking sequence tags (FSTs) have been obtained and assigned to the rice genome. T-DNA was preferentially (similar to 80%) integrated into genic regions. A total of 19,000 FSTs pooled from this and another T-DNA tagged population were analyzed and compared with 18,000 FSTs from a Tos17 tagged population. There was difference in preference for integrations into genic, coding, and flanking regions, as well as repetitive sequences and centromeric regions, between T-DNA and Tos17; however, T-DNA integration was more evenly distributed in the rice genome than Tos17. Our T-DNA contains an enhancer octamer next to the left border, expression of genes within genetics distances of 12.5 kb was enhanced. For example, the normal height of a severe dwarf mutant, with its gibberellin 2-oxidase (GA2ox) gene being activated by T-DNA, was restored upon GA treatment, indicating GA2ox was one of the key enzymes regulating the endogenous level of GA. Our T-DNA also contains a promoterless GUS gene next to the right border. GUS activity screening facilitated identification of genes responsive to various stresses and those regulated temporally and spatially in large scale with high frequency. Our mutant population offers a highly valuable resource for high throughput rice functional analyses using both forward and reverse genetic approaches
    corecore