974 research outputs found
Reconstructing the Equation of State for Dark Energy In the Double Complex Symmetric Gravitational Theory
We propose to study the accelerating expansion of the universe in the double
complex symmetric gravitational theory (DCSGT). The universe we live in is
taken as the real part of the whole spacetime which is double
complex. By introducing the spatially flat FRW metric, not only the double
Friedmann Equations but also the two constraint conditions and
are obtained. Furthermore, using parametric ansatz, we reconstruct the
and for dark energy from real observational data. We
find that in the two cases of and , the
corresponding equations of state remain close to -1 at present
() and change from below -1 to above -1. The results illustrate that the
whole spacetime, i.e. the double complex spacetime , may be
either ordinary complex () or hyperbolic complex
(). And the fate of the universe would be Big Rip in the
future.Comment: 5 pages, 5 figures, accepted by Commun. Theor. Phy
Acute effects of ambient nitrogen oxides and interactions with temperature on cardiovascular mortality in Shenzhen, China
Background: Though inconsistent, acute effects of ambient nitrogen oxides on cardiovascular mortality have been reported. Whereas, interactive roles of temperature on their relationships and joint effects of different indicators of nitrogen oxides were less studied. This study aimed to extrapolate the independent roles of ambient nitrogen oxides and temperature interactions on cardiovascular mortality.Methods: Data on mortality, air pollutants, and meteorological factors in Shenzhen from 2013 to 2019 were collected. Three indicators including nitric oxide (NO), nitrogen dioxide (NO2), and nitrogen oxides (NOX) were studied. Adjusted generalized additive models (GAMs) were applied to analyse their associations with cardiovascular mortality in different groups.Results: The average daily concentrations of NO, NO2, and NOX were 11.7 mu g/m(3), 30.7 mu g/m(3), and 53.2 mu g/m(3), respectively. Significant associations were shown with each indicator. Cumulative effects of nitrogen oxides were more obvious than distributed lag effects. Males, population under 65 years old, and population with stroke related condition were more susceptible to nitrogen oxides. Adverse effects of nitrogen oxides were more significant at low temperature. Impacts of NO2 on cardiovascular mortality, and NO on stroke mortality were the most robust in the multi-pollutant models, whereas variations were shown in the other relationships.Conclusions: Low levels of nitrogen oxides showed acute and adverse impacts and the interactive roles of temperature on cardiovascular mortality. Cumulative effects were most significant and joint effects of nitrogen oxides required more attention. Population under 65 years old and population with stroke-related health condition were susceptible, especially days at lower temperature
"quasi-particles" in bosonization theory of interacting fermion liquids at arbitrary dimensions
Within bosonization theory we introduce in this paper a new definition of
"quasi-particles" for interacting fermions at arbitrary space dimenions. In
dimensions higher than one we show that the constructed quasi-particles are
consistent with quasi-particle descriptions in Landau Fermi liquid theory
whereas in one-dimension the quasi-particles" are non-perturbative objects
(spinons and holons) obeying fractional statistics. The more general situation
of Fermi liquids with singular Landau interaction is discussed.Comment: 10 page
Excitations of a Bose-Einstein condensate in a one-dimensional optical lattice
We investigate the low-lying excitations of a stack of weakly-coupled
two-dimensional Bose-Einstein condensates that is formed by a one-dimensional
optical lattice. In particular, we calculate the dispersion relations of the
monopole and quadrupole modes, both for the ground state as well as for the
case in which the system contains a vortex along the direction of the lasers
creating the optical lattice. Our variational approach enables us to determine
analytically the dispersion relations for an arbitrary number of atoms in every
two-dimensional condensate and for an arbitrary momentum. We also discuss the
feasibility of experimentally observing our results.Comment: 16 pages, 5 figures, minor changes,accepted for publication in Phys.
Rev.
Gravitational Contributions to the Running of Gauge Couplings
Gravitational contributions to the running of gauge couplings are calculated
by using different regularization schemes. As the function concerns
counter-terms of dimension four, only quadratic divergences from the
gravitational contributions need to be investigated. A consistent result is
obtained by using a symmetry-preserving loop regularization with string-mode
regulators which can appropriately treat the quadratic divergences and preserve
non-abelian gauge symmetry. The harmonic gauge condition for gravity is used in
both diagrammatical and background field calculations, the resulting
gravitational corrections to the function are found to be nonzero,
which is different from previous results presented in the existing literatures.Comment: 5 pages, 2 figures, published versio
Applicability of perturbative QCD to decays
We develop perturbative QCD factorization theorem for the semileptonic heavy
baryon decay , whose form factors are
expressed as the convolutions of hard quark decay amplitudes with universal
and baryon wave functions. Large logarithmic
corrections are organized to all orders by the Sudakov resummation, which
renders perturbative expansions more reliable. It is observed that perturbative
QCD is applicable to decays for velocity transfer
greater than 1.2. Under requirement of heavy quark symmetry, we predict the
branching ratio , and determine
the and baryon wave functions.Comment: 12 pages in Latex file, 3 figures in postscript files, some results
are changed, but the conclusion is the sam
Constraints on coupling constant between dark energy and dark matter
We have investigated constraints on the coupling between dark matter and the
interacting Chaplygin gas. Our results indicate that the coupling constant
between these two entities can take arbitrary values, which can be either
positive or negative, thus giving arbitrary freedom to the inter-conversion
between Chaplygin gas and dark matter. Thus our results indicate that the
restriction on the coupling constant occurs as a very special case. Our
analysis also supports the existence of phantom energy under certain conditions
on the coupling constant.Comment: 16 Pages, 3 figure
Solving variational inequalities defined on a domain with infinitely many linear constraints
We study a variational inequality problem whose domain is defined by infinitely many linear inequalities. A discretization method and an analytic center based inexact cutting plane method are proposed. Under proper assumptions, the convergence results for both methods are given. We also provide numerical examples to illustrate the proposed method
Interacting Modified Variable Chaplygin Gas in Non-flat Universe
A unified model of dark energy and matter is presented using the modified
variable Chaplygin gas for interacting dark energy in a non-flat universe. The
two entities interact with each other non-gravitationally which involves a
coupling constant. Due to dynamic interaction, the variation in this constant
arises that henceforth changes the equations of state of these quantities. We
have derived the effective equations of state corresponding to matter and dark
energy in this interacting model. Moreover, the case of phantom energy is
deduced by putting constraints on the parameters involved.Comment: 9 pages; Accepted for publication in European Physical Journal
Reduction of the Three Dimensional Schrodinger Equation for Multilayered Films
In this paper, we present a method for reducing the three dimensional
Schrodinger equation to study confined metallic states, such as quantum well
states, in a multilayer film geometry. While discussing some approximations
that are employed when dealing with the three dimensionality of the problem, we
derive a one dimensional equation suitable for studying such states using an
envelope function approach. Some applications to the Cu/Co multilayer system
with regard to spin tunneling/rotations and angle resolved photoemission are
discussed.Comment: 14 pages, 1 figur
- …