893 research outputs found

    Dynamics of tilt-based browsing on mobile devices

    Get PDF
    A tilt-controlled photo browsing method for small mobile devices is presented. The implementation uses continuous inputs from an accelerometer, and a multimodal (visual, audio and vibrotactile) display coupled with the states of this model. The model is based on a simple physical model, with its characteristics shaped to enhance usability. We show how the dynamics of the physical model can be shaped to make the handling qualities of the mobile device fit the browsing task. We implemented the proposed algorithm on Samsung MITs PDA with tri-axis accelerometer and a vibrotactile motor. The experiment used seven novice users browsing from 100 photos. We compare a tilt-based interaction method with a button-based browser and an iPod wheel. We discuss the usability performance and contrast this with subjective experience from the users. The iPod wheel has significantly poorer performance than button pushing or tilt interaction, despite its commercial popularity

    Coulomb drag in high Landau levels

    Full text link
    Recent experiments on Coulomb drag in the quantum Hall regime have yielded a number of surprises. The most striking observations are that the Coulomb drag can become negative in high Landau levels and that its temperature dependence is non-monotonous. We develop a systematic diagrammatic theory of Coulomb drag in strong magnetic fields explaining these puzzling experiments. The theory is applicable both in the diffusive and the ballistic regimes; we focus on the experimentally relevant ballistic regime (interlayer distance aa smaller than the cyclotron radius RcR_c). It is shown that the drag at strong magnetic fields is an interplay of two contributions arising from different sources of particle-hole asymmetry, namely the curvature of the zero-field electron dispersion and the particle-hole asymmetry associated with Landau quantization. The former contribution is positive and governs the high-temperature increase in the drag resistivity. On the other hand, the latter one, which is dominant at low TT, has an oscillatory sign (depending on the difference in filling factors of the two layers) and gives rise to a sharp peak in the temperature dependence at TT of the order of the Landau level width.Comment: 26 pages, 13 figure

    Flux Creep and Flux Jumping

    Full text link
    We consider the flux jump instability of the Bean's critical state arising in the flux creep regime in type-II superconductors. We find the flux jump field, BjB_j, that determines the superconducting state stability criterion. We calculate the dependence of BjB_j on the external magnetic field ramp rate, B˙e\dot B_e. We demonstrate that under the conditions typical for most of the magnetization experiments the slope of the current-voltage curve in the flux creep regime determines the stability of the Bean's critical state, {\it i.e.}, the value of BjB_j. We show that a flux jump can be preceded by the magneto-thermal oscillations and find the frequency of these oscillations as a function of B˙e\dot B_e.Comment: 7 pages, ReVTeX, 2 figures attached as postscript file

    Angular 21 cm Power Spectrum of a Scaling Distribution of Cosmic String Wakes

    Full text link
    Cosmic string wakes lead to a large signal in 21 cm redshift maps at redshifts larger than that corresponding to reionization. Here, we compute the angular power spectrum of 21 cm radiation as predicted by a scaling distribution of cosmic strings whose wakes have undergone shock heating.Comment: 13 pages, 6 figures; v2: minor modifications, journal versio

    Singularities in the Fermi liquid description of a partially filled Landau level and the energy gaps of fractional quantum Hall states

    Full text link
    We consider a two dimensional electron system in an external magnetic field at and near an even denominator Landau level filling fraction. Using a fermionic Chern--Simons approach we study the description of the system's low energy excitations within an extension of Landau's Fermi liquid theory. We calculate perturbatively the effective mass and the quasi--particle interaction function characterizing this description. We find that at an even denominator filling fraction the fermion's effective mass diverges logarithmically at the Fermi level, and argue that this divergence allows for an {\it exact} calculation of the energy gaps of the fractional quantized Hall states asymptotically approaching these filling fractions. We find that the quasi--particle interaction function approaches a delta function. This singular behavior leads to a cancelation of the diverging effective mass from the long wavelength low frequency linear response functions at even denominator filling fractions.Comment: 46 pages, RevTeX, 5 figures included in a uuencoded postscript file. Minor revisions relative to the original version. The paper will be published in the Physical Review B, and can be retrieved from the World Wide Web, in http://cmtw.harvard.edu/~ster

    Transport of Surface States in the Bulk Quantum Hall Effect

    Full text link
    The two-dimensional surface of a coupled multilayer integer quantum Hall system consists of an anisotropic chiral metal. This unusual metal is characterized by ballistic motion transverse and diffusive motion parallel (\hat{z}) to the magnetic field. Employing a network model, we calculate numerically the phase coherent two-terminal z-axis conductance and its mesoscopic fluctuations. Quasi-1d localization effects are evident in the limit of many layers. We consider the role of inelastic de-phasing effects in modifying the transport of the chiral surface sheath, discussing their importance in the recent experiments of Druist et al.Comment: 9 pages LaTex, 9 postscript figures included using eps

    "quasi-particles" in bosonization theory of interacting fermion liquids at arbitrary dimensions

    Full text link
    Within bosonization theory we introduce in this paper a new definition of "quasi-particles" for interacting fermions at arbitrary space dimenions. In dimensions higher than one we show that the constructed quasi-particles are consistent with quasi-particle descriptions in Landau Fermi liquid theory whereas in one-dimension the quasi-particles" are non-perturbative objects (spinons and holons) obeying fractional statistics. The more general situation of Fermi liquids with singular Landau interaction is discussed.Comment: 10 page

    Bounds from Primordial Black Holes with a Near Critical Collapse Initial Mass Function

    Get PDF
    Recent numerical evidence suggests that a mass spectrum of primordial black holes (PBHs) is produced as a consequence of near critical gravitational collapse. Assuming that these holes formed from the initial density perturbations seeded by inflation, we calculate model independent upper bounds on the mass variance at the reheating temperature by requiring the mass density not exceed the critical density and the photon emission not exceed current diffuse gamma-ray measurements. We then translate these results into bounds on the spectral index n by utilizing the COBE data to normalize the mass variance at large scales, assuming a constant power law, then scaling this result to the reheating temperature. We find that our bounds on n differ substantially (\delta n > 0.05) from those calculated using initial mass functions derived under the assumption that the black hole mass is proportional to the horizon mass at the collapse epoch. We also find a change in the shape of the diffuse gamma-ray spectrum which results from the Hawking radiation. Finally, we study the impact of a nonzero cosmological constant and find that the bounds on n are strengthened considerably if the universe is indeed vacuum-energy dominated today.Comment: 24 pages, REVTeX, 5 figures; minor typos fixed, two refs added, version to be published in PR
    • …
    corecore