13,126 research outputs found

    Minimum construction of two-qubit quantum operations

    Full text link
    Optimal construction of quantum operations is a fundamental problem in the realization of quantum computation. We here introduce a newly discovered quantum gate, B, that can implement any arbitrary two-qubit quantum operation with minimal number of both two- and single-qubit gates. We show this by giving an analytic circuit that implements a generic nonlocal two-qubit operation from just two applications of the B gate. We also demonstrate that for the highly scalable Josephson junction charge qubits, the B gate is also more easily and quickly generated than the CNOT gate for physically feasible parameters.Comment: 4 page

    Massive charged particle's tunneling from spherical charged black hole

    Full text link
    We generalize the Parikh-Wilczek scheme to the tunneling of a massive charged particle from a general spherical charged black hole. We obtain that the tunneling probability depends on the energy, the mass and the charge of the particle. In particular, the modified Hawking temperature is related to the charge. Only at the leading order approximation can the standard Hawking temperature be reproduced. We take the Reissner-Nordstr\"{o}m black hole as an example to clarify our points of view, and find that the accumulation of Hawking radiation makes it approach an extreme black hole.Comment: 10 pages, no figures; v2: a minor typo corrected; v3: 11 pages, clarification and reference added, final version to be published in EPL; v4: minor modifications to match the published versio

    Robust nodal superconductivity induced by isovalent doping in Ba(Fe1−x_{1-x}Rux_x)2_2As2_2 and BaFe2_2(As1−x_{1-x}Px_x)2_2

    Full text link
    We present the ultra-low-temperature heat transport study of iron-based superconductors Ba(Fe1−x_{1-x}Rux_x)2_2As2_2 and BaFe2_2(As1−x_{1-x}Px_x)2_2. For optimally doped Ba(Fe0.64_{0.64}Ru0.36_{0.36})2_2As2_2, a large residual linear term κ0/T\kappa_0/T at zero field and a H\sqrt{H} dependence of κ0(H)/T\kappa_0(H)/T are observed, which provide strong evidences for nodes in the superconducting gap. This result demonstrates that the isovalent Ru doping can also induce nodal superconductivity, as P does in BaFe2_2(As0.67_{0.67}P0.33_{0.33})2_2. Furthermore, in underdoped Ba(Fe0.77_{0.77}Ru0.23_{0.23})2_2As2_2 and heavily underdoped BaFe2_2(As0.82_{0.82}P0.18_{0.18})2_2, κ0/T\kappa_0/T manifests similar nodal behavior, which shows the robustness of nodal superconductivity in the underdoped regime and puts constraint on theoretical models.Comment: 5 pages, 4 figures - with two underdoped samples added, this paper supersedes arXiv:1106.541

    Optimal quantum circuit synthesis from Controlled-U gates

    Full text link
    From a geometric approach, we derive the minimum number of applications needed for an arbitrary Controlled-Unitary gate to construct a universal quantum circuit. A new analytic construction procedure is presented and shown to be either optimal or close to optimal. This result can be extended to improve the efficiency of universal quantum circuit construction from any entangling gate. Specifically, for both the Controlled-NOT and Double-CNOT gates, we develop simple analytic ways to construct universal quantum circuits with three applications, which is the least possible.Comment: 4 pages, 3 figure

    First Principles Studies on 3-Dimentional Strong Topological Insulators: Bi2Te3, Bi2Se3 and Sb2Te3

    Full text link
    Bi2Se3, Bi2Te3 and Sb2Te3 compounds are recently predicted to be 3-dimentional (3D) strong topological insulators. In this paper, based on ab-initio calculations, we study in detail the topological nature and the surface states of this family compounds. The penetration depth and the spin-resolved Fermi surfaces of the surface states will be analyzed. We will also present an procedure, from which highly accurate effective Hamiltonian can be constructed, based on projected atomic Wannier functions (which keep the symmetries of the systems). Such Hamiltonian can be used to study the semi-infinite systems or slab type supercells efficiently. Finally, we discuss the 3D topological phase transition in Sb2(Te1-xSex)3 alloy system.Comment: 8 pages,17 figure

    Symmetries and Lie algebra of the differential-difference Kadomstev-Petviashvili hierarchy

    Full text link
    By introducing suitable non-isospectral flows we construct two sets of symmetries for the isospectral differential-difference Kadomstev-Petviashvili hierarchy. The symmetries form an infinite dimensional Lie algebra.Comment: 9 page
    • …
    corecore