94,106 research outputs found

    Ab initio study of single molecular transistor modulated by gate-bias

    Get PDF
    We use a self-consistent method to study the current of the single molecular transistor modulated by the transverse gate-bias in the level of the first-principles calculations. The numerical results show that both the polyacene-dithiol molecules and the fused-ring oligothiophene molecules are the potential high-frequency molecular transistor controlled by the transverse field. The long molecules of the polyacene-dithiol or the fused-ring thiophene are in favor of realizing the gate-bias controlled molecular transistor. The theoretical results suggest the related experiments.Comment: 14 pages, 7 figure

    Boundary States in Graphene Heterojunctions

    Full text link
    A new type of states in graphene-based planar heterojunctions has been studied in the envelope wave function approximation. The condition for the formation of these states is the intersection between the dispersion curves of graphene and its gap modification. This type of states can also occur in smooth graphene-based heterojunctions.Comment: 5 pages, 3 figure

    Nambu-Goldstone Mechanism in Real-Time Thermal Field Theory

    Get PDF
    In a one-generation fermion condensate scheme of electroweak symmetry breaking, it is proven based on Schwinger-Dyson equation in the real-time thermal field theory in the fermion bubble diagram approximation that, at finite temperature TT below the symmetry restoration temperature TcT_c, a massive Higgs boson and three massless Nambu-Goldstone bosons could emerge from the spontaneous breaking of electroweak group SUL(2)×UY(1)→UQ(1)SU_L(2)\times U_Y(1) \to U_Q(1) if the two fermion flavors in the one generation are mass-degenerate, thus Goldstone Theorem is rigorously valid in this case. However, if the two fermion flavors have unequal masses, owing to "thermal flactuation", the Goldstone Theorem will be true only approximately for a very large momentum cut-off Λ\Lambda in zero temperature fermion loop or for low energy scales. All possible pinch singularities are proven to cancel each other, as is expected in a real-time thermal field theory.Comment: 11 pages, revtex, no figure, Phys. Rev. D, to appea

    Ground state fidelity in bond-alternative Ising chains with Dzyaloshinskii-Moriya interactions

    Full text link
    A systematic analysis is performed for quantum phase transitions in a bond-alternative one-dimensional Ising model with a Dzyaloshinskii-Moriya (DM) interaction by using the fidelity of ground state wave functions based on the infinite matrix product states algorithm. For an antiferromagnetic phase, the fidelity per lattice site exhibits a bifurcation, which shows spontaneous symmetry breaking in the system. A critical DM interaction is inversely proportional to an alternating exchange coupling strength for a quantum phase transition. Further, a finite-entanglement scaling of von Neumann entropy with respect to truncation dimensions gives a central charge c = 0.5 at the critical point.Comment: 6 pages, 4 figure

    Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene

    Full text link
    We study the broadband optical conductivity and ultrafast carrier dynamics of epitaxial graphene in the few-layer limit. Equilibrium spectra of nominally buffer, monolayer, and multilayer graphene exhibit significant terahertz and near-infrared absorption, consistent with a model of intra- and interband transitions in a dense Dirac electron plasma. Non-equilibrium terahertz transmission changes after photoexcitation are shown to be dominated by excess hole carriers, with a 1.2-ps mono-exponential decay that reflects the minority-carrier recombination time.Comment: 4 pages, 3 figures, final versio
    • 

    corecore