38,695 research outputs found

    Multiscale Finite Element Methods for Nonlinear Problems and their Applications

    Get PDF
    In this paper we propose a generalization of multiscale finite element methods (Ms-FEM) to nonlinear problems. We study the convergence of the proposed method for nonlinear elliptic equations and propose an oversampling technique. Numerical examples demonstrate that the over-sampling technique greatly reduces the error. The application of MsFEM to porous media flows is considered. Finally, we describe further generalizations of MsFEM to nonlinear time-dependent equations and discuss the convergence of the method for various kinds of heterogeneities

    Optimal Local Multi-scale Basis Functions for Linear Elliptic Equations with Rough Coefficient

    Get PDF
    This paper addresses a multi-scale finite element method for second order linear elliptic equations with arbitrarily rough coefficient. We propose a local oversampling method to construct basis functions that have optimal local approximation property. Our methodology is based on the compactness of the solution operator restricted on local regions of the spatial domain, and does not depend on any scale-separation or periodicity assumption of the coefficient. We focus on a special type of basis functions that are harmonic on each element and have optimal approximation property. We first reduce our problem to approximating the trace of the solution space on each edge of the underlying mesh, and then achieve this goal through the singular value decomposition of an oversampling operator. Rigorous error estimates can be obtained through thresholding in constructing the basis functions. Numerical results for several problems with multiple spatial scales and high contrast inclusions are presented to demonstrate the compactness of the local solution space and the capacity of our method in identifying and exploiting this compact structure to achieve computational savings

    q-deformed Supersymmetric t-J Model with a Boundary

    Full text link
    The q-deformed supersymmetric t-J model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the quantum affine superalgebra Uq[sl(21)^]U_q[\hat{sl(2|1)}]. We give the bosonization of the boundary states. We give an integral expression of the correlation functions of the boundary model, and derive the difference equations which they satisfy.Comment: LaTex file 18 page

    Self-similar Singularity of a 1D Model for the 3D Axisymmetric Euler Equations

    Get PDF
    We investigate the self-similar singularity of a 1D model for the 3D axisymmetric Euler equations, which is motivated by a particular singularity formation scenario observed in numerical computation. We prove the existence of a discrete family of self-similar profiles for this model and analyze their far-field properties. The self-similar profiles we find agree with direct simulation of the model and seem to have some stability

    Data-Driven Time-Frequency Analysis

    Get PDF
    In this paper, we introduce a new adaptive data analysis method to study trend and instantaneous frequency of nonlinear and non-stationary data. This method is inspired by the Empirical Mode Decomposition method (EMD) and the recently developed compressed (compressive) sensing theory. The main idea is to look for the sparsest representation of multiscale data within the largest possible dictionary consisting of intrinsic mode functions of the form {a(t)cos(θ(t))}\{a(t) \cos(\theta(t))\}, where aV(θ)a \in V(\theta), V(θ)V(\theta) consists of the functions smoother than cos(θ(t))\cos(\theta(t)) and θ0\theta'\ge 0. This problem can be formulated as a nonlinear L0L^0 optimization problem. In order to solve this optimization problem, we propose a nonlinear matching pursuit method by generalizing the classical matching pursuit for the L0L^0 optimization problem. One important advantage of this nonlinear matching pursuit method is it can be implemented very efficiently and is very stable to noise. Further, we provide a convergence analysis of our nonlinear matching pursuit method under certain scale separation assumptions. Extensive numerical examples will be given to demonstrate the robustness of our method and comparison will be made with the EMD/EEMD method. We also apply our method to study data without scale separation, data with intra-wave frequency modulation, and data with incomplete or under-sampled data
    corecore