71,726 research outputs found

    Population study for γ\gamma-ray emitting Millisecond Pulsars and FermiFermi unidentified sources

    Full text link
    The FermiFermi-LAT has revealed that rotation powered millisecond pulsars (MSPs) are a major contributor to the Galactic γ\gamma-ray source population. We discuss the γ\gamma-ray emission process within the context of the outer gap accelerator model, and use a Monte-Calro method to simulate the Galactic population of the γ\gamma-ray emitting MSPs. We find that the outer gap accelerator controlled by the magnetic pair-creation process is preferable in explaining the possible correlation between the γ\gamma-ray luminosity and the spin down power. Our Monte-Calro simulation implies that most of the γ\gamma-ray emitting MSPs are radio quiet in the present sensitivity of the radio survey, indicating that most of the γ\gamma-ray MSPs have been unidentified. We argue that the Galactic FermiFermi unidentified sources located at high latitudes should be dominated by MSPs, whereas the sources in the galactic plane are dominated by radio-quiet canonical pulsars.Comment: 2011 Fermi Symposium proceedings - eConf C11050

    Long-term X-ray emission from Swift J1644+57

    Get PDF
    The X-ray emission from Swift J1644+57 is not steadily decreasing instead it shows multiple pulses with declining amplitudes. We model the pulses as reverse shocks from collisions between the late ejected shells and the externally shocked material, which is decelerated while sweeping the ambient medium. The peak of each pulse is taken as the maximum emission of each reverse shock. With a proper set of parameters, the envelope of peaks in the light curve as well as the spectrum can be modelled nicely.Comment: 6 pages, 2 figures, accepted for publication in MNRA

    Three-dimensional Two-Layer Outer Gap Model: the Third Peak of Vela Pulsar

    Full text link
    We extend the two-dimensional two-layer outer gap model to a three-dimensional geometry and use it to study the high-energy emission of the Vela pulsar. We apply this three-dimensional two-layer model to the Vela pulsar and compare the model light curves, the phase-averaged spectrum and the phase-resolved spectra with the recent Fermi observations, which also reveals the existence of the third peak between two main peaks. The phase position of the third peak moves with the photon energy, which cannot be explained by the geometry of magnetic field structure and the caustic effect of the photon propagation. We suggest that the existence of the third peak and its energy dependent movement results from the azimuthal structure of the outer gap.Comment: 2011 Fermi Symposium proceedings - eConf C11050

    Radiation Mechanism of the Soft Gamma-ray Pulsar PSR B1509-58

    Full text link
    The outer gap model is used here to explain the spectrum and the energy dependent light curves of the X-ray and soft gamma-ray radiations of the spin-down powered pulsar PSR B1509-58.In the outer gap model, most pairs inside the gap are created around the null charge surface and the gap's electric field separates the two charges to move in opposite directions. Consequently, the region from the null charge surface to the light cylinder is dominated by the outflow of particles and that from the null charge surface to the star is dominated by the inflow of particles. The inflow and outflow of particles move along the magnetic field lines and emit curvature photons, and the incoming curvature photons are converted to pairs by the strong magnetic field of the star. These pairs emit synchrotron photons. We suggest that the X-rays and soft gamma-rays of PSR B1509-58 result from the synchrotron radiation of these pairs, and the viewing angle of PSR B1509-58 only receives the inflow radiation. The magnetic pair creation requires a large pitch angle, which makes the pulse profile of the synchrotron radiation distinct from that of the curvature radiation. We carefully trace the pulse profiles of the synchrotron radiation with different pitch angles. We find that the differences between the light curves of different energy bands are due to the different pitch angles of the secondary pairs, and the second peak appearing at E>10MeV comes from the region near the star, where the stronger magnetic field allows the pair creation to happen with a smaller pitch angle.Comment: 5 pages, 8 figures, 2012 Fermi Symposium proceedings - eConf C12102
    • …
    corecore