43,189 research outputs found

    Quantitative Description of V2O3V_2O_3 by the Hubbard Model in Infinite Dimensions

    Full text link
    We show that the analytic single-particle density of states and the optical conductivity for the half-filled Hubbard model on the Bethe lattice in infinite dimensions describe quantitatively the behavior of the gap and the kinetic energy ratio of the correlated insulator V2O3V_2O_3. The form of the optical conductivity shows ω3/2\omega^{3/2} rising and is quite similar to the experimental data, and the density of states shows ω1/2\omega^{1/2} behavior near the band edges.Comment: 9 pages, revtex, 4 figures upon reques

    Provable Deterministic Leverage Score Sampling

    Full text link
    We explain theoretically a curious empirical phenomenon: "Approximating a matrix by deterministically selecting a subset of its columns with the corresponding largest leverage scores results in a good low-rank matrix surrogate". To obtain provable guarantees, previous work requires randomized sampling of the columns with probabilities proportional to their leverage scores. In this work, we provide a novel theoretical analysis of deterministic leverage score sampling. We show that such deterministic sampling can be provably as accurate as its randomized counterparts, if the leverage scores follow a moderately steep power-law decay. We support this power-law assumption by providing empirical evidence that such decay laws are abundant in real-world data sets. We then demonstrate empirically the performance of deterministic leverage score sampling, which many times matches or outperforms the state-of-the-art techniques.Comment: 20th ACM SIGKDD Conference on Knowledge Discovery and Data Minin

    Fresnel operator, squeezed state and Wigner function for Caldirola-Kanai Hamiltonian

    Full text link
    Based on the technique of integration within an ordered product (IWOP) of operators we introduce the Fresnel operator for converting Caldirola-Kanai Hamiltonian into time-independent harmonic oscillator Hamiltonian. The Fresnel operator with the parameters A,B,C,D corresponds to classical optical Fresnel transformation, these parameters are the solution to a set of partial differential equations set up in the above mentioned converting process. In this way the exact wavefunction solution of the Schr\"odinger equation governed by the Caldirola-Kanai Hamiltonian is obtained, which represents a squeezed number state. The corresponding Wigner function is derived by virtue of the Weyl ordered form of the Wigner operator and the order-invariance of Weyl ordered operators under similar transformations. The method used here can be suitable for solving Schr\"odinger equation of other time-dependent oscillators.Comment: 6 pages, 2 figure

    Crumpling wires in two dimensions

    Full text link
    An energy-minimal simulation is proposed to study the patterns and mechanical properties of elastically crumpled wires in two dimensions. We varied the bending rigidity and stretching modulus to measure the energy allocation, size-mass exponent, and the stiffness exponent. The mass exponent is shown to be universal at value DM=1.33D_{M}=1.33. We also found that the stiffness exponent α=−0.25\alpha =-0.25 is universal, but varies with the plasticity parameters ss and θp\theta_{p}. These numerical findings agree excellently with the experimental results

    Finite-size scaling of synchronized oscillation on complex networks

    Full text link
    The onset of synchronization in a system of random frequency oscillators coupled through a random network is investigated. Using a mean-field approximation, we characterize sample-to-sample fluctuations for networks of finite size, and derive the corresponding scaling properties in the critical region. For scale-free networks with the degree distribution P(k)∼k−γP(k)\sim k^{-\gamma} at large kk, we found that the finite size exponent νˉ\bar{\nu} takes on the value 5/2 when γ>5\gamma>5, the same as in the globally coupled Kuramoto model. For highly heterogeneous networks (3<γ<53<\gamma <5), νˉ\bar{\nu} and the order parameter exponent β\beta depend on γ\gamma. The analytic expressions for these exponents obtained from the mean field theory are shown to be in excellent agreement with data from extensive numerical simulations.Comment: 7 page

    Fully gapped superconducting state in Au2Pb: a natural candidate for topological superconductor

    Full text link
    We measured the ultra-low-temperature specific heat and thermal conductivity of Au2_2Pb single crystal, a possible three-dimensional Dirac semimetal with a superconducting transition temperature Tc≈T_c \approx 1.05 K. The electronic specific heat can be fitted by a two-band s-wave model, which gives the gap amplitudes Δ1\Delta_1(0)/kBTck_BT_c = 1.38 and Δ2\Delta_2(0)/kBTck_BT_c = 5.25. From the thermal conductivity measurements, a negligible residual linear term κ0/T\kappa_0/T in zero field and a slow field dependence of κ0/T\kappa_0/T at low field are obtained. These results suggest that Au2_2Pb has a fully gapped superconducting state in the bulk, which is a necessary condition for topological superconductor if Au2_2Pb is indeed one.Comment: 6 pages, 4 figure

    Superfluid pairing in a mixture of a spin-polarized Fermi gas and a dipolar condensate

    Full text link
    We consider a mixture of a spin-polarized Fermi gas and a dipolar Bose-Einstein condensate in which s-wave scattering between fermions and the quasiparticles of the dipolar condensate can result in an effective attractive Fermi-Fermi interaction anisotropic in nature and tunable by the dipolar interaction. We show that such an interaction can significantly increase the prospect of realizing a superfluid with a gap parameter characterized with a coherent superposition of all odd partial waves. We formulate, in the spirit of the Hartree-Fock-Bogoliubov mean-field approach, a theory which allows us to estimate the critical temperature when the anisotropic Fock potential is taken into consideration and to determine the system parameters that optimize the critical temperature at which such a superfluid emerges before the system begins to phase separate.Comment: 10 pages, 3 figure
    • …
    corecore