6,077 research outputs found
Superfluid-insulator transition of the Josephson junction array model with commensurate frustration
We have studied the rationally frustrated Josephson-junction array model in
the square lattice through Monte Carlo simulations of D XY-model. For
frustration , the model at zero temperature shows a continuous
superfluid-insulator transition. From the measurement of the correlation
function and the superfluid stiffness, we obtain the dynamical critical
exponent and the correlation length critical exponent . While the dynamical critical exponent is the same as that for cases
, 1/2, and 1/3, the correlation length critical exponent is surprisingly
quite different. When , we have the nature of a first-order transition.Comment: RevTex 4, to appear in PR
BRST Quantization of the Proca Model based on the BFT and the BFV Formalism
The BRST quantization of the Abelian Proca model is performed using the
Batalin-Fradkin-Tyutin and the Batalin-Fradkin-Vilkovisky formalism. First, the
BFT Hamiltonian method is applied in order to systematically convert a second
class constraint system of the model into an effectively first class one by
introducing new fields. In finding the involutive Hamiltonian we adopt a new
approach which is more simpler than the usual one. We also show that in our
model the Dirac brackets of the phase space variables in the original second
class constraint system are exactly the same as the Poisson brackets of the
corresponding modified fields in the extended phase space due to the linear
character of the constraints comparing the Dirac or Faddeev-Jackiw formalisms.
Then, according to the BFV formalism we obtain that the desired resulting
Lagrangian preserving BRST symmetry in the standard local gauge fixing
procedure naturally includes the St\"uckelberg scalar related to the explicit
gauge symmetry breaking effect due to the presence of the mass term. We also
analyze the nonstandard nonlocal gauge fixing procedure.Comment: 29 pages, plain Latex, To be published in Int. J. Mod. Phys.
What situations trigger intense emotions in automobiles?
Conference ProceedingsDriving involves a variety of events and activities that stimulate emotional experiences. The aim of this investigation was to examine automobile experiences and to identify affective themes. 245 UK-based participants were recruited using a
purposive sampling strategy. One study consisted of an online questionnaire which inquired about the automotive experiences which proved most emotionally intense. The second consisted of a simulator based immersive driving experience, followed
afterwards by a questionnaire which inquired about the automotive experiences which proved most emotionally intense. Questionnaire responses were clustered into themes using a content analysis method. The study identified 13 major themes and 44 sub-themes. The findings provide guidance regarding the triggers of emotional responses which designers can use to better understand and to improve automotive experiences.Jaguar Land Rover as part of project Automotive Habitat Laboratory (AutoHablab)
Phase Transitions in the Two-Dimensional XY Model with Random Phases: a Monte Carlo Study
We study the two-dimensional XY model with quenched random phases by Monte
Carlo simulation and finite-size scaling analysis. We determine the phase
diagram of the model and study its critical behavior as a function of disorder
and temperature. If the strength of the randomness is less than a critical
value, , the system has a Kosterlitz-Thouless (KT) phase transition
from the paramagnetic phase to a state with quasi-long-range order. Our data
suggest that the latter exists down to T=0 in contradiction with theories that
predict the appearance of a low-temperature reentrant phase. At the critical
disorder and for there is no
quasi-ordered phase. At zero temperature there is a phase transition between
two different glassy states at . The functional dependence of the
correlation length on suggests that this transition corresponds to the
disorder-driven unbinding of vortex pairs.Comment: LaTex file and 18 figure
Phase diagram of a Disordered Boson Hubbard Model in Two Dimensions
We study the zero-temperature phase transition of a two-dimensional
disordered boson Hubbard model. The phase diagram of this model is constructed
in terms of the disorder strength and the chemical potential. Via quantum Monte
Carlo simulations, we find a multicritical line separating the weak-disorder
regime, where a random potential is irrelevant, from the strong-disorder
regime. In the weak-disorder regime, the Mott-insulator-to-superfluid
transition occurs, while, in the strong-disorder regime, the
Bose-glass-to-superfluid transition occurs. On the multicritical line, the
insulator-to-superfluid transition has the dynamical critical exponent and the correlation length critical exponent ,
that are different from the values for the transitions off the line. We suggest
that the proliferation of the particle-hole pairs screens out the weak disorder
effects.Comment: 4 pages, 4 figures, to be published in PR
- …