1,150 research outputs found

    Fermion Condensates of massless QED2QED_2 at Finite Density in non-trivial Topological Sectors

    Full text link
    Vacuum expectation values of products of local bilinears ψˉψ\bar\psi\psi are computed in massless QED2QED_2 at finite density. It is shown that chiral condensates exhibit an oscillatory inhomogeneous behaviour depending on the chemical potential. The use of a path-integral approach clarifies the connection of this phenomenon with the topological structure of the theory.Comment: 16 pages, no figures, To be published in Phys.Rev.

    How To Perform Meaningful Estimates of Genetic Effects

    Get PDF
    Although the genotype-phenotype map plays a central role both in Quantitative and Evolutionary Genetics, the formalization of a completely general and satisfactory model of genetic effects, particularly accounting for epistasis, remains a theoretical challenge. Here, we use a two-locus genetic system in simulated populations with epistasis to show the convenience of using a recently developed model, NOIA, to perform estimates of genetic effects and the decomposition of the genetic variance that are orthogonal even under deviations from the Hardy-Weinberg proportions. We develop the theory for how to use this model in interval mapping of quantitative trait loci using Halley-Knott regressions, and we analyze a real data set to illustrate the advantage of using this approach in practice. In this example, we show that departures from the Hardy-Weinberg proportions that are expected by sampling alone substantially alter the orthogonal estimates of genetic effects when other statistical models, like F2 or G2A, are used instead of NOIA. Finally, for the first time from real data, we provide estimates of functional genetic effects as sets of effects of natural allele substitutions in a particular genotype, which enriches the debate on the interpretation of genetic effects as implemented both in functional and in statistical models. We also discuss further implementations leading to a completely general genotype-phenotype map

    Superconducting Fluctuation and Pseudogap in Disordered Short Coherence Length Superconductor

    Full text link
    We investigate the role of disorder on the superconducting (SC) fluctuation in short coherence length d-wave superconductors. The particular intetest is focused on the disorder-induced microscopic inhomogeneity of SC fluctuation and its effect on the pseudogap phenomena. We formulate the self-consistent 1-loop order theory for the SC fluctuation in inhomogeneous systems and analyze the disordered tt-tt'-VV model. The SC correlation function, electronic DOS and the critical temperature are estimated. The SC fluctuation is localized like a nanoscale granular structure when the coherence length is short, namely the transition temperature is high. This is contrasted to the long coherence length superconductors where the order parameter is almost uniform in the microscopic scale. In the former case, the SC fluctuation is enhanced by the disorder in contrast to the Abrikosov-Gorkov theory. These results are consistent with the STM, NMR and transport measurements in high-TcT_{\rm c} cuprates and illuminate the essential role of the microscopic inhomogeneity. We calculate the spacial dependence of DOS around the single impurity and discuss the consistency with the NMR measurements

    Emergence of Skyrme crystal in Gross-Neveu and 't Hooft models at finite density

    Get PDF
    We study two-dimensional, large NN field theoretic models (Gross-Neveu model, 't Hooft model) at finite baryon density near the chiral limit. The same mechanism which leads to massless baryons in these models induces a breakdown of translational invariance at any finite density. In the chiral limit baryonic matter is characterized by a spatially varying chiral angle with a wave number depending only on the density. For small bare quark masses a sine-Gordon kink chain is obtained which may be regarded as simplest realization of the Skyrme crystal for nuclear matter. Characteristic differences between confining and non-confining models are pointed out.Comment: 27 pages, 11 figures, added reference, corrected sig

    Multiflavor Correlation Functions in non-Abelian Gauge Theories at Finite Density in two dimensions

    Get PDF
    We compute vacuum expectation values of products of fermion bilinears for two-dimensional Quantum Chromodynamics at finite flavored fermion densities. We introduce the chemical potential as an external charge distribution within the path-integral approach and carefully analyse the contribution of different topological sectors to fermion correlators. We show the existence of chiral condensates exhibiting an oscillatory inhomogeneous behavior as a function of a chemical potential matrix. This result is exact and goes in the same direction as the behavior found in QCD_4 within the large N approximation.Comment: 28 pages Latex (3 pages added and other minor changes) to appear in Phys.Rev.

    Variable selection for large p small n regression models with incomplete data: Mapping QTL with epistases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying quantitative trait loci (QTL) for both additive and epistatic effects raises the statistical issue of selecting variables from a large number of candidates using a small number of observations. Missing trait and/or marker values prevent one from directly applying the classical model selection criteria such as Akaike's information criterion (AIC) and Bayesian information criterion (BIC).</p> <p>Results</p> <p>We propose a two-step Bayesian variable selection method which deals with the sparse parameter space and the small sample size issues. The regression coefficient priors are flexible enough to incorporate the characteristic of "large <it>p </it>small <it>n</it>" data. Specifically, sparseness and possible asymmetry of the significant coefficients are dealt with by developing a Gibbs sampling algorithm to stochastically search through low-dimensional subspaces for significant variables. The superior performance of the approach is demonstrated via simulation study. We also applied it to real QTL mapping datasets.</p> <p>Conclusion</p> <p>The two-step procedure coupled with Bayesian classification offers flexibility in modeling "large p small n" data, especially for the sparse and asymmetric parameter space. This approach can be extended to other settings characterized by high dimension and low sample size.</p

    Machine-Part cell formation through visual decipherable clustering of Self Organizing Map

    Full text link
    Machine-part cell formation is used in cellular manufacturing in order to process a large variety, quality, lower work in process levels, reducing manufacturing lead-time and customer response time while retaining flexibility for new products. This paper presents a new and novel approach for obtaining machine cells and part families. In the cellular manufacturing the fundamental problem is the formation of part families and machine cells. The present paper deals with the Self Organising Map (SOM) method an unsupervised learning algorithm in Artificial Intelligence, and has been used as a visually decipherable clustering tool of machine-part cell formation. The objective of the paper is to cluster the binary machine-part matrix through visually decipherable cluster of SOM color-coding and labelling via the SOM map nodes in such a way that the part families are processed in that machine cells. The Umatrix, component plane, principal component projection, scatter plot and histogram of SOM have been reported in the present work for the successful visualization of the machine-part cell formation. Computational result with the proposed algorithm on a set of group technology problems available in the literature is also presented. The proposed SOM approach produced solutions with a grouping efficacy that is at least as good as any results earlier reported in the literature and improved the grouping efficacy for 70% of the problems and found immensely useful to both industry practitioners and researchers.Comment: 18 pages,3 table, 4 figure

    Magnetic neutron scattering in hole doped cuprate superconductors

    Full text link
    A review is presented of the static and dynamic magnetic properties of hole-doped cuprate superconductors measured with neutron scattering. A wide variety of experiments are described with emphasis on the monolayer La_{2-x}(Sr,Ba)_{x}CuO_{4} and bilayer YBa_{2}Cu_{3}O_{6+x} cuprates. At zero hole doping, both classes of materials are antiferromagnetic insulators with large superexchange constants of J > 100 meV. For increasing hole doping, the cuprates become superconducting at a critical hole concentration of x_{c}=0.055. The development of new instrumentation at neutron beam sources coupled with the improvement in materials has lead to a better understanding of these materials and the underlying spin dynamics over a broad range of hole dopings. We will describe how the spin dispersion changes across the insulating to superconducting boundary as well as the static magnetic properties which are directly coupled with the superconductivity. Experiments directly probing the competing magnetic and superconducting order parameters involving magnetic fields, impurity doping, and structural order will be examined. Correlations between superconductivity and magnetism will also be discussed.Comment: 14 pages, 18 figures. To be published in Journal of the Physical Society of Japa

    Evaluation of the nasal mucociliary transport rate by rhinoscintigraphy before and after surgery in patients with deviated nasal septum

    Get PDF
    In this study, we have investigated the effect of nasal septal deviation (NSD) on nasal mucociliary activity and how does a septoplasty operation affecs the nasal mucociliary transport rate in the first and third months during the post-operative period. Twenty-two patients who were diagnosed with NSD and 22 healthy controls were studied using rhinoscintigraphy with Tc-99m-macroaggregated albumin (Tc-99m-MAA). On each case, the nasal mucociliary transport rate (NMTR) was measured pre-operatively only on five cases, on the first and third months of post-operative period. The NMTRs of patients with a deviated septum were significantly lower than the NMTRs of the healthy controls on both the convex and concave sides. Significant improvement was observed in the first post-operative month. On the concave and convex sides, the average postop third month post-operative NMTR value was higher than the first month post-operative NMTR values. It was concluded that the septoplasty operation improves reduced NMTRs after surgery. The effect of nasal surgery on nasal mucociliary activity may be more accurately evaluated in the third month than the first month of post-operative period
    corecore