5,234 research outputs found

    Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface

    Full text link
    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).Comment: Supplementary Materials; https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.119.091102/supplementary_material_170801.pd

    Reconstruction of spectral solar irradiance since 1700 from simulated magnetograms

    Full text link
    We present a reconstruction of the spectral solar irradiance since 1700 using the SATIRE-T2 (Spectral And Total Irradiance REconstructions for the Telescope era version 2) model. This model uses as input magnetograms simulated with a surface flux transport model fed with semi-synthetic records of emerging sunspot groups. We used statistical relationships between the properties of sunspot group emergence, such as the latitude, area, and tilt angle, and the sunspot cycle strength and phase to produce semi-synthetic sunspot group records starting in the year 1700. The semisynthetic records are fed into a surface flux transport model to obtain daily simulated magnetograms that map the distribution of the magnetic flux in active regions (sunspots and faculae) and their decay products on the solar surface. The magnetic flux emerging in ephemeral regions is accounted for separately based on the concept of extended cycles whose length and amplitude are linked to those of the sunspot cycles through the sunspot number. The magnetic flux in each surface component (sunspots, faculae and network, and ephemeral regions) was used to compute the spectral and total solar irradiance between the years 1700 and 2009. This reconstruction is aimed at timescales of months or longer although the model returns daily values. We found that SATIRE-T2, besides reproducing other relevant observations such as the total magnetic flux, reconstructs the total solar irradiance (TSI) on timescales of months or longer in good agreement with the PMOD composite of observations, as well as with the reconstruction starting in 1878 based on the RGO-SOON data. The model predicts an increase in the TSI of 1.2[+0.2, -0.3] Wm-2 between 1700 and the present. The spectral irradiance reconstruction is in good agreement with the UARS/SUSIM measurements as well as the Lyman-alpha composite.Comment: 13 pages, 10 figure

    UV solar irradiance in observations and the NRLSSI and SATIRE-S models

    Full text link
    Total solar irradiance and UV spectral solar irradiance have been monitored since 1978 through a succession of space missions. This is accompanied by the development of models aimed at replicating solar irradiance by relating the variability to solar magnetic activity. The NRLSSI and SATIRE-S models provide the most comprehensive reconstructions of total and spectral solar irradiance over the period of satellite observation currently available. There is persistent controversy between the various measurements and models in terms of the wavelength dependence of the variation over the solar cycle, with repercussions on our understanding of the influence of UV solar irradiance variability on the stratosphere. We review the measurement and modelling of UV solar irradiance variability over the period of satellite observation. The SATIRE-S reconstruction is consistent with spectral solar irradiance observations where they are reliable. It is also supported by an independent, empirical reconstruction of UV spectral solar irradiance based on UARS/SUSIM measurements from an earlier study. The weaker solar cycle variability produced by NRLSSI between 300 and 400 nm is not evident in any available record. We show that although the method employed to construct NRLSSI is principally sound, reconstructed solar cycle variability is detrimentally affected by the uncertainty in the SSI observations it draws upon in the derivation. Based on our findings, we recommend, when choosing between the two models, the use of SATIRE-S for climate studies

    Motility induced changes in viscosity of suspensions of swimming microbes in extensional flows

    Full text link
    Suspensions of motile cells are model systems for understanding the unique mechanical properties of living materials which often consist of ensembles of self-propelled particles. We present here a quantitative comparison of theory against experiment for the rheology of such suspensions. The influence of motility on viscosities of cell suspensions is studied using a novel acoustically-driven microfluidic capillary-breakup extensional rheometer. Motility increases the extensional viscosity of suspensions of algal pullers, but decreases it in the case of bacterial or sperm pushers. A recent model [Saintillan, Phys. Rev. E, 2010, 81:56307] for dilute active suspensions is extended to obtain predictions for higher concentrations, after independently obtaining parameters such as swimming speeds and diffusivities. We show that details of body and flagellar shape can significantly determine macroscale rheological behaviour.Comment: 12 pages, 1 appendix, 7 figures, submitted to Soft Matter - under revie

    Shaking Table Test of the Taiwanese Traditional Dieh-Dou Timber Frame

    Get PDF
    This article attempts to explore the dynamic behavior of traditional Dieh-Dou timber structure under different combinations of structural forms and vertical loads. Using time-history record (TCU 084) from the Chi-Chi earthquake, two semi full-scale specimens (Symmetric and Asymmetric) were tested. Results showed that the Symmetric specimen tends to be damaged more easily and faster than the Asymmetric one. Damage pattern generally begins from the bottom Dou members and subsequently spreading upwards to the upper Dou, horizontal Gong members, and adjoining Shu members. Friction force between the contact surfaces is crucial towards the maintenance of overall structure. Increase vertical loadings have significant effect on the natural frequencies and global stiffness of the structure. Using the Single-Degree-Of-Freedom (SDOF) system, the derived stiffness is generally in good agreement with the dynamic results of both forms. This study suggests that the effects of increasing vertical loadings should be taken into consideration for future evaluation

    Intersite coupling effects in a Kondo lattice

    Full text link
    The La dilution of the Kondo lattice CeCoIn_5 is studied. The scaling laws found for the magnetic susceptibility and the specific heat reveal two well-separated energy scales, corresponding to the single impurity Kondo temperature T_K and an intersite spin-liquid temperature T^*. The Ce-dilute alloy has the expected Fermi liquid ground state, while the specific heat and resistivity in the dense Kondo regime exhibit non-Fermi-liquid behavior, which scales with T^*. These observations indicate that the screening of the magnetic moments in the lattice involves antiferromagnetic intersite correlations with a larger energy scale in comparison with the Kondo impurity case.Comment: 4 pages, 4 figure

    CRISPR Knockout of the HuR Gene Causes a Xenograft Lethal Phenotype.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer-related deaths in the United States, whereas colorectal cancer is the third most common cancer. The RNA-binding protein HuR (ELAVL1) supports a pro-oncogenic network in gastrointestinal (GI) cancer cells through enhanced HuR expression. Using a publically available database, HuR expression levels were determined to be increased in primary PDA and colorectal cancer tumor cohorts as compared with normal pancreas and colon tissues, respectively. CRISPR/Cas9 technology was successfully used to delete the HuR gene in both PDA (MIA PaCa-2 and Hs 766T) and colorectal cancer (HCT116) cell lines. HuR deficiency has a mild phenotype

    Evaluation of cognitive function in adult rhesus monkeys using the finger maze test

    Get PDF
    In research on cognitive function, the use of experimental animals is essential for the study of human cognitive processes and mechanisms. Furthermore, non-human primates are necessary for understanding higher cognitive functions in humans. However, there are few cognitive function tests available for non-human primates, Thus, we modified a finger maze test for application to non-human primates. In this study, we assessed learning and memory in 12 adult rhesus monkeys using a finger maze test that was developed to assess cognitive functions in captive non-human primates. The monkeys were trained with moving rewards indicating the correct direction, which allowed the monkeys to obtain the reward. Following training, subjects completed a learning trial and a memory trial two months later. Although the time required for training varied among the monkeys, 11 out of 12 monkeys completed the training and achieved a high success rate in the learning trial as well as in the memory trial conducted 2 months later. This is the first study to apply the finger maze test to adult rhesus monkeys. The finger maze test enabled us to assess learning and memory in several adult rhesus monkeys simultaneously
    corecore