14,749 research outputs found
Dust-to-gas ratio, factor and CO-dark gas in the Galactic anticentre: an observational study
We investigate the correlation between extinction and H~{\sc i} and CO
emission at intermediate and high Galactic latitudes (|b|>10\degr) within the
footprint of the Xuyi Schmidt Telescope Photometric Survey of the Galactic
anticentre (XSTPS-GAC) on small and large scales. In Paper I (Chen et al.
2014), we present a three-dimensional dust extinction map within the footprint
of XSTPS-GAC, covering a sky area of over 6,000\,deg at a spatial angular
resolution of 6\,arcmin. In the current work, the map is combined with data
from gas tracers, including H~{\sc i} data from the Galactic Arecibo L-band
Feed Array H~{\sc i} survey and CO data from the Planck mission, to constrain
the values of dust-to-gas ratio and CO-to-
conversion factor for the entire GAC
footprint excluding the Galactic plane, as well as for selected star-forming
regions (such as the Orion, Taurus and Perseus clouds) and a region of diffuse
gas in the northern Galactic hemisphere. For the whole GAC footprint, we find
\, and \,. We have also
investigated the distribution of "CO-dark" gas (DG) within the footprint of GAC
and found a linear correlation between the DG column density and the -band
extinction: . The mass fraction of DG is found to be toward
the Galactic anticentre, which is respectively about 23 and 124 per cent of the
atomic and CO-traced molecular gas in the same region. This result is
consistent with the theoretical work of Papadopoulos et al. but much larger
than that expected in the cloud models by Wolfire et al.Comment: 11 pages, 7 figures, accepted for publication in MNRA
Gaussian-Gamma collaborative filtering: a hierarchical Bayesian model for recommender systems
The traditional collaborative filtering (CF) suffers from two key challenges, namely, the normal assumption that it is not robust, and it is difficult to set in advance the penalty terms of the latent features. We therefore propose a hierarchical Bayesian model-based CF and the related inference algorithm. Specifically, we impose a Gaussian-Gamma prior on the ratings, and the latent features. We show the model is more robust, and the penalty terms can be adapted automatically in the inference. We use Gibbs sampler for the inference and provide a statistical explanation. We verify the performance using both synthetic and real dataset
Entanglement-enhanced measurement of a completely unknown phase
The high-precision interferometric measurement of an unknown phase is the
basis for metrology in many areas of science and technology. Quantum
entanglement provides an increase in sensitivity, but present techniques have
only surpassed the limits of classical interferometry for the measurement of
small variations about a known phase. Here we introduce a technique that
combines entangled states with an adaptive algorithm to precisely estimate a
completely unspecified phase, obtaining more information per photon that is
possible classically. We use the technique to make the first ab initio
entanglement-enhanced optical phase measurement. This approach will enable
rapid, precise determination of unknown phase shifts using interferometry.Comment: 6 pages, 4 figure
HST and LAMOST discover a dual active galactic nucleus in J0038+4128
We report the discovery of a kiloparsec-scale dual active galactic nucleus
(AGN) in J0038+4128. From the Hubble Space Telescope (HST) Wide Field Planetary
Camera (WFPC2) images, we find two optical nuclei with a projection separation
of 4.7 kpc (3.44 arcsec). The southern component (J0038+4128S) is
spectroscopically observed with the HST Goddard High Resolution Spectrograph in
the UV range and is found to be a Seyfert 1 galaxy with a broad Ly alpha
emission line. The northern component (J0038+4128N) is spectroscopically
observed during the Large Sky Area Multi-Object Fibre Spectroscopic Telescope
(also named the Guoshoujing Telescope) pilot survey in the optical range. The
observed line ratios as well as the consistency of redshift of the nucleus
emission lines and the host galaxy's absorption lines indicate that J0038+4128N
is a Seyfert 2 galaxy with narrow lines only. These results thus confirm that
J0038+4128 is a Seyfert 1-Seyfert 2 AGN pair. The HST WFPC2 F336W/U-band image
of J0038+4128 also reveals for the first time for a dual AGN system two pairs
of bi-symmetric arms, as are expected from the numerical simulations of such
system. Being one of a few confirmed kiloparsec-scale dual AGNs exhibiting a
clear morphological structure of the host galaxies, J0038+4128 provides an
unique opportunity to study the co-evolution of the host galaxies and their
central supermassive black holes undergoing a merging process.Comment: 6 pages, 4 figures, 2 tables, Accepted for publication in MNRAS
Letter
Fractional quantum Hall effect at : Ground states, non-Abelian quasiholes, and edge modes in a microscopic model
We present a comprehensive numerical study of a microscopic model of the
fractional quantum Hall system at filling fraction , based on the
disc geometry. Our model includes Coulomb interaction and a semi-realistic
confining potential. We also mix in some three-body interaction in some cases
to help elucidate the physics. We obtain a phase diagram, discuss the
conditions under which the ground state can be described by the Moore-Read
state, and study its competition with neighboring stripe phases. We also study
quasihole excitations and edge excitations in the Moore-Read--like state. From
the evolution of edge spectrum, we obtain the velocities of the charge and
neutral edge modes, which turn out to be very different. This separation of
velocities is a source of decoherence for a non-Abelian quasihole/quasiparticle
(with charge ) when propagating at the edge; using numbers obtained
from a specific set of parameters we estimate the decoherence length to be
around four microns. This sets an upper bound for the separation of the two
point contacts in a double point contact interferometer, designed to detect the
non-Abelian nature of such quasiparticles. We also find a state that is a
potential candidate for the recently proposed anti-Pfaffian state. We find the
speculated anti-Pfaffian state is favored in weak confinement (smooth edge)
while the Moore-Read Pfaffian state is favored in strong confinement (sharp
edge).Comment: 15 pages, 9 figures; Estimate of e/4 quasiparticle/hole coherence
length when propagating along the edge modified in response to a recent
revision of Ref. 25, and minor changes elsewher
- …