20 research outputs found
TREATMENT, DISEASE CONTROL, QUALITY OF LIFE AND PSYCHOLOGICAL STATUS IN PATIENTS WITH ANKYLOSING SPONDYLITIS DURING THE COVID-19 PANDEMIC
Introduction. The coronavirus disease (COVID-19) pandemic has the potential to impact disease activity and psychological well-being in people with rheumatic diseases. This study aimed to compare ankylosing spondylitis (AS) patients with and without COVID-19 history in terms of treatment, disease control, quality of life and psychological status by providing a cross-sectional look at treatment, disease control, quality of life and psychological status in patients with AS during the COVID-19 pandemic.
Methods. The study included 74 AS patients, in two groups based on COVID-19 history. Demographic data and clinical characteristics were recorded. Treatment, disease control, functional status, and quality of life were evaluated using Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Functional Index (BASFI), and impact of COVID-19 on quality-of-life scales. Psychological status was assessed using the Beck Depression Inventory, Beck Hopelessness Scale, and COVID-19 anxiety scale.
Results. Of the 74 patients diagnosed with AS, 44 were female and 34 were male. The mean age was 47.3 years. In total, 35 patients (47.3%) had COVID-19. We found that the group without COVID-19 had significantly higher levels of hypothyroidism than the other group (p = 0.008). The BASFI value was significantly higher in the COVID-19 group (p = 0.031). The group with COVID-19 had a substantially higher rate of continuing non-anti-rheumatic drug use than the other group (p = 0.02).
Conclusion. During COVID-19 pandemic period, the majority of patients continued their medication, so treatment and disease control were not negatively affected. Having COVID-19 did not cause a significant difference psychologically
Transmittivity of a Bose-Einstein condensate on a lattice: interference from period doubling and the effect of disorder
We evaluate the particle current flowing in steady state through a
Bose-Einstein condensate subject to a constant force in a quasi-onedimensional
lattice and to attractive interactions from fermionic atoms that are localized
in various configurations inside the lattice wells. The system is treated
within a Bose-Hubbard tight binding model by an out-of-equilibrium Green's
function approach. A new band gap opens up when the lattice period is doubled
by locating the fermions in alternate wells and yields an interference pattern
in the transmittivity on varying the intensity of the driving force. The
positions of the transmittivity minima are determined by matching the period of
Bloch oscillations and the time for tunnelling across the band gap. Massive
disorder in the distribution of the fermions will wash out the interference
pattern, but the same period doubling of the lattice can be experimentally
realized in a four-beam set-up. We report illustrative numerical results for a
mixture of 87Rb and 40K atoms in an optical lattice created by laser beams with
a wavelength of 763 nm.Comment: 13 pages, 5 figure
A hyper-heuristic with two guidance indicators for bi-objective mixed-shift vehicle routing problem with time windows
In this paper, a Mixed-Shift Vehicle Routing Problem is proposed based on a real-life container transportation problem. In a long planning horizon of multiple shifts, transport tasks are completed satisfying the time constraints. Due to the different travel distances and time of tasks, there are two types of shifts (long shift and short shift) in this problem. The unit driver cost for long shifts is higher than that of short shifts. A mathematical model of this Mixed-Shift Vehicle Routing Problem with Time Windows (MS-VRPTW) is established in this paper, with two objectives of minimizing the total driver payment and the total travel distance. Due to the large scale and nonlinear constraints, the exact search showed is not suitable to MS-VRPTW. An initial solution construction heuristic (EBIH) and a selective perturbation Hyper-Heuristic (GIHH) are thus developed. In GIHH, five heuristics with different extents of perturbation at the low level are adaptively selected by a high level selection scheme with the Hill Climbing acceptance criterion. Two guidance indicators are devised at the high level to adaptively adjust the selection of the low level heuristics for this bi-objective problem. The two indicators estimate the objective value improvement and the improvement direction over the Pareto Front, respectively. To evaluate the generality of the proposed algorithms, a set of benchmark instances with various features is extracted from real-life historical datasets. The experiment results show that GIHH significantly improves the quality of the final Pareto Solution Set, outperforming the state-of-the-art algorithms for similar problems. Its application on VRPTW also obtains promising results
Bone Marrow Mononuclear Cells Up-Regulate Toll-Like Receptor Expression and Produce Inflammatory Mediators in Response to Cigarette Smoke Extract
Several reports link cigarette smoking with leukemia. However, the effects of cigarette smoke extract (CSE) on bone marrow hematopoiesis remain unknown. The objective of this study was to elucidate the direct effects of cigarette smoke on human bone marrow hematopoiesis and characterize the inflammatory process known to result from cigarette smoking. Bone marrow mononuclear cells (BMCs) from healthy individuals when exposed to CSE had significantly diminished CFU-E, BFU-E and CFU-GM. We found increased nuclear translocation of the NF-κB p65 subunit and, independently, enhanced activation of AKT and ERK1/2. Exposure of BMCs to CSE induced IL-8 and TGF-β1 production, which was dependent on NF-κB and ERK1/2, but not on AKT. CSE treatment had no effect on the release of TNF-α, IL-10, or VEGF. Finally, CSE also had a significant induction of TLR2, TLR3 and TLR4, out of which, the up-regulation of TLR2 and TLR3 was found to be dependent on ERK1/2 and NF-κB activation, but not AKT. These results indicate that CSE profoundly inhibits the growth of erythroid and granulocyte-macrophage progenitors in the bone marrow. Further, CSE modulates NF-κB- and ERK1/2-dependent responses, suggesting that cigarette smoking may impair bone marrow hematopoiesis in vivo as well as induce inflammation, two processes that proceed malignant transformation
Discrete-time prediction of chatter stability, cutting forces, and surface location errors in flexible milling systems
This paper presents a discrete-time modeling of dynamic milling systems. End mills with arbitrary geometry are divided into differential elements along the cutter axis. Variable pitch and helix angles, as well as run-outs can be assigned to cutting edges. The structural dynamics of the slender end mills and thin-walled parts are also considered at each differential element at the tool-part contact zone. The cutting forces include static chip removal, ploughing, regenerative vibrations, and process damping components. The dynamic milling system is modeled by a matrix of delay differential equations with periodic coefficients, and solved with an improved semidiscrete-time domain method in modal space. The chatter stability of the system is predicted by checking the eigenvalues of the time-dependent transition matrix which covers the tooth period for regular or spindle periods for variable pitch cutters, respectively. The same equation is also used to predict the process states such as cutting forces, vibrations, and dimensional surface errors at discrete-time domain intervals analytically. The proposed model is experimentally validated in down milling of a workpiece with 5% radial immersion and 30 mm axial depth of cut with a four fluted helical end mill.</jats:p
Overexpression of p27(Kip1) lengthens the G(1) phase in a mouse model that targets inducible gene expression to central nervous system progenitor cells
We describe a mouse model in which p27(Kip1) transgene expression is spatially restricted to the central nervous system neuroepithelium and temporally controlled with doxycycline. Transgene-specific transcripts are detectable within 6 h of doxycycline administration, and maximum nonlethal expression is approached within 12 h. After 18–26 h of transgene expression, the G(1) phase of the cell cycle is estimated to increase from 9 to 13 h in the neocortical neuroepithelium, the maximum G(1) phase length attainable in this proliferative population in normal mice. Thus our data establish a direct link between p27(Kip1) and control of G(1) phase length in the mammalian central nervous system and unveil intrinsic mechanisms that constrain the G(1) phase length to a putative physiological maximum despite ongoing p27(Kip1) transgene expression