31,455 research outputs found

    A new weak lensing shear analysis method using ellipticity defined by 0th order moments

    Full text link
    We developed a new method that uses ellipticity defined by 0th order moments (0th-ellipticity) for weak gravitational lensing shear analysis. Although there is a strong correlation between the ellipticity calculated using this approach and the usual ellipticity defined by the 2nd order moment, the ellipticity calculated here has a higher signal-to-noise ratio because it is weighted to the central region of the image. These results were confirmed using data for Abell 1689 from the Subaru telescope. For shear analysis, we adopted the ellipticity of re-smeared artificial image (ERA) method for point spread function (PSF) correction, and we tested the precision of this 0th-ellipticity with simple simulation, then we obtained the same level of precision with the results of ellipticity defined by quadrupole moments. Thus, we can expect that weak lensing analysis using 0 shear will be improved in proportion to the statistical error.Comment: 25pages, 8figures; published by A&A 201

    Faithful actions from hyperplane arrangements

    Get PDF
    We show that if X is a smooth quasiprojective 3–fold admitting a flopping contraction, then the fundamental group of an associated simplicial hyperplane arrangement acts faithfully on the derived category of X. The main technical advance is to use torsion pairs as an efficient mechanism to track various objects under iterations of the flop functor (or mutation functor). This allows us to relate compositions of the flop functor (or mutation functor) to the theory of Deligne normal form, and to give a criterion for when a finite composition of 3–fold flops can be understood as a tilt at a single torsion pair. We also use this technique to give a simplified proof of a result of Brav and Thomas (Math. Ann. 351 (2011) 1005–1017) for Kleinian singularities

    Realization of odd-frequency p-wave spin-singlet superconductivity coexisting with antiferromagnetic order near quantum critical point

    Full text link
    A possibility of the realization of the p-wave spin-singlet superconductivity (ppSS), whose gap function is odd both in momentum and in frequency, is investigated by solving the gap equation with the phenomenological interaction mediated by the antiferromagnetic spin fluctuation. The ppSS is realized prevailing over the d-wave singlet superconductivity (ddSS) in the vicinity of antiferromagnetic quantum critical pint (QCP) both on the paramagnetic and on the antiferromagnetic sides. Off the QCP in the paramagnetic phase, however, the ddSS with line-nodes is realized as \textit{conventional} anisotropic superconductivity. For the present ppSS state, there is no gap in the quasiparticle spectrum everywhere on the Fermi surface due to its odd frequency. These features can give a qualitative understanding of the anomalous behaviors of NQR relaxation rate on CeCu2_2Si2_2 or CeRhIn5_5 where the antiferromagnetism and superconductivity coexist on a microscopic level.Comment: 20 pages with 12 figures. To appear in J. Phys. Soc. Jpn. Vol. 72, No. 1
    • …
    corecore