31,066 research outputs found

    Pressure Dependence of Wall Relaxation in Polarized 3^3He Gaseous Cells

    Full text link
    We have observed a linear pressure dependence of longitudinal relaxation time (T1T_1) at 4.2 K and 295 K in gaseous 3^3He cells made of either bare pyrex glass or Cs/Rb-coated pyrex due to paramagnetic sites in the cell wall. The paramagnetic wall relaxation is previously thought to be independent of 3^3He pressure. We develop a model to interpret the observed wall relaxation by taking into account the diffusion process, and our model gives a good description of the data

    Enhanced flux pinning in YBa2Cu3O7-d films by nano-scaled substrate surface roughness

    Full text link
    Nano-scaled substrate surface roughness is shown to strongly influence the critical current density Jc in YBCO films made by pulse-laser-deposition on the crystalline LaAlO3 substrates consisting of two separate twin-free and twin-rich regions. The nano-scaled corrugated surface was created in the twin-rich region during the deposition process. Using magneto-optical imaging techniques coupled with optical and atomic force microscopy, we observed an enhanced flux pinning in the YBCO films in the twin-rich region, resulted in \~30% increase in Jc, which was unambiguously confirmed by the direct transport measurement.Comment: 16 pages, 3 figures, accepted by Applied Physics Letter

    Precision spectroscopy and density-dependent frequency shifts in ultracold Sr

    Full text link
    By varying the density of an ultracold 88^{88}Sr sample from 10910^9 cm−3^{-3} to >1012> 10^{12} cm−3^{-3}, we make the first definitive measurement of the density-related frequency shift and linewidth broadening of the 1S0^1S_0 - 3P1^3P_1 optical clock transition in an alkaline earth system. In addition, we report the most accurate measurement to date of the 88^{88}Sr 1S0−3P1^1S_0 - ^3P_1 optical clock transition frequency. Including a detailed analysis of systematic errors, the frequency is (434829121312334±20stat±33sys434 829 121 312 334 \pm 20_{stat} \pm 33_{sys}) Hz.Comment: 4 pages, 4 figures, 1 table. submitte

    Analysis of Power-aware Buffering Schemes in Wireless Sensor Networks

    Full text link
    We study the power-aware buffering problem in battery-powered sensor networks, focusing on the fixed-size and fixed-interval buffering schemes. The main motivation is to address the yet poorly understood size variation-induced effect on power-aware buffering schemes. Our theoretical analysis elucidates the fundamental differences between the fixed-size and fixed-interval buffering schemes in the presence of data size variation. It shows that data size variation has detrimental effects on the power expenditure of the fixed-size buffering in general, and reveals that the size variation induced effects can be either mitigated by a positive skewness or promoted by a negative skewness in size distribution. By contrast, the fixed-interval buffering scheme has an obvious advantage of being eminently immune to the data-size variation. Hence the fixed-interval buffering scheme is a risk-averse strategy for its robustness in a variety of operational environments. In addition, based on the fixed-interval buffering scheme, we establish the power consumption relationship between child nodes and parent node in a static data collection tree, and give an in-depth analysis of the impact of child bandwidth distribution on parent's power consumption. This study is of practical significance: it sheds new light on the relationship among power consumption of buffering schemes, power parameters of radio module and memory bank, data arrival rate and data size variation, thereby providing well-informed guidance in determining an optimal buffer size (interval) to maximize the operational lifespan of sensor networks

    An experimental approach to quantify strain transfer efficiency of fibre bragg grating sensors to host structures

    Get PDF
    This paper developed a method to evaluate the strain transfer efficiency of fibre Bragg grating sensors to host structures. Various coatings were applied to fibre Bragg grating sensors after being fabricated. They were epoxy, silane agent and polypropylene, representing different surface properties. A neat epoxy resin plate was used as the host in which the coated fibre sensors were embedded in the central layer. The tensile strain output from the FBGs was compared with that obtained from electrical strain gauges which were attached on the surface of the specimen. A calculating method based on the measured strains was developed to quantify the strain transfer function of different surface coatings. The strain transfer coefficient obtained from the proposed method provided a direct indicator to evaluate the strain transfer efficiency of different coatings used on the FBG sensors, under either short or long-term loading. The results demonstrated that the fibre sensor without any coating possessed the best strain transfer, whereas, the worst strain transfer was created by polypropylene coating. Coatings play a most influential role in strain measurements using FBG sensors

    The complex multiferroic phase diagram of Mn1−x_{1-x}Cox_xWO4_4

    Full text link
    The complete magnetic and multiferroic phase diagram of Mn1−x_{1-x}Cox_{x}WO4_4 single crystals is investigated by means of magnetic, heat capacity, and polarization experiments. We show that the ferroelectric polarization P→\overrightarrow{P} in the multiferroic state abruptly changes its direction twice upon increasing Co content, x. At xc1_{c1}=0.075, P→\overrightarrow{P} rotates from the b−b-axis into the a−ca-c plane and at xc2_{c2}=0.15 it flips back to the b−b-axis. The origin of the multiple polarization flops is identified as an effect of the Co anisotropy on the orientation and shape of the spin helix leading to thermodynamic instabilities caused by the decrease of the magnitude of the polarization in the corresponding phases. A qualitative description of the ferroelectric polarization is derived by taking into account the intrachain (c−c-axis) as well as the interchain (a−a-axis) exchange pathways connecting the magnetic ions. In a narrow Co concentration range (0.1≤\leqx≤\leq0.15), an intermediate phase, sandwiched between the collinear high-temperature and the helical low-temperature phases, is discovered. The new phase exhibits a collinear and commensurate spin modulation similar to the low-temperature magnetic structure of MnWO4_4.Comment: 18 pages, 6 figure
    • …
    corecore