60,918 research outputs found

    Photoinjector-generation of a flat electron beam with transverse emittance ratio of 100

    Full text link
    The generation of a flat electron beam directly from a photoinjector is an attractive alternative to the electron damping ring as envisioned for linear colliders. It also has potential applications to light sources such as the generation of ultra-short x-ray pulses or Smith-Purcell free electron lasers. In this Letter, we report on the experimental generation of a flat-beam with a measured transverse emittance ratio of 100±20.2100\pm 20.2 for a bunch charge of ∼0.5\sim 0.5 nC; the smaller measured normalized root-mean-square emittance is ∼0.4\sim 0.4 μ\mum and is limited by the resolution of our experimental setup. The experimental data, obtained at the Fermilab/NICADD Photoinjector Laboratory, are compared with numerical simulations and the expected scaling laws.Comment: 5 pages, 3 figure

    Self-consistency in the Projected Shell Model

    Full text link
    The Projected Shell Model is a shell model theory built up over a deformed BCS mean field. Ground state and excited bands in even-even nuclei are obtained through diagonalization of a pairing plus quadrupole Hamiltonian in an angular momentum projected 0-, 2-, and 4-quasiparticle basis. The residual quadrupole-quadrupole interaction strength is fixed self-consistently with the deformed mean field and the pairing constants are the same used in constructing the quasiparticle basis. Taking 160Dy^{160}Dy as an example, we calculate low-lying states and compare them with experimental data. We exhibit the effect of changing the residual interaction strengths on the spectra. It is clearly seen that there are many JÏ€=0+,1+,4+J^\pi = 0^+, 1^+, 4^+ bandheads whose energies can only be reproduced using the self-consistent strengths. It is thus concluded that the Projected Shell Model is a model essentially with no free parameters.Comment: 13 pages, 10 figures, submitted to Nuclear Physics

    The evolution of knowledge within and across fields in modern physics

    Get PDF
    9 pages, 4 figuresThe exchange of knowledge across different areas and disciplines plays a key role in the process of knowledge creation, and can stimulate innovation and the emergence of new fields. We develop here a quantitative framework to extract significant dependencies among scientific disciplines and turn them into a time-varying network whose nodes are the different fields, while the weighted links represent the flow of knowledge from one field to another at a given period of time. Drawing on a comprehensive data set on scientific production in modern physics and on the patterns of citations between articles published in the various fields in the last 30 years, we are then able to map, over time, how the ideas developed in a given field in a certain time period have influenced later discoveries in the same field or in other fields. The analysis of knowledge flows internal to each field displays a remarkable variety of temporal behaviours, with some fields of physics showing to be more self-referential than others. The temporal networks of knowledge exchanges across fields reveal cases of one field continuously absorbing knowledge from another field in the entire observed period, pairs of fields mutually influencing each other, but also cases of evolution from absorbing to mutual or even to back-nurture behaviors

    Thermal Conductivity of Pr_{1.3-x}La_{0.7}Ce_xCuO_4 Single Crystals and Signatures of Stripes in an Electron-Doped Cuprate

    Full text link
    It was recently demonstrated that the anisotropic phonon heat transport behavior is a good probe of the stripe formation in La_{2-x}Sr_xCuO_4 (LSCO) [X. F. Sun {\it et al.}, Phys. Rev. B {\bf 67}, 104503 (2003)]. Using this probe, we examined an electron-doped cuprate Pr_{1.3-x}La_{0.7}Ce_xCuO_4 (PLCCO) and found that essentially the same features as those in LSCO are observed. Moreover, the in-plane resistivity \rho_{ab} of lightly-doped PLCCO shows metallic behavior (d\rho_{ab}/dT > 0) in the N\'eel ordered state with a mobility comparable to that in LSCO. It is discussed that these peculiar properties in common with LSCO signify the existence of stripes in electron-doped cuprates.Comment: 4 pages, 4 figures, revised version accepted for publication in Phys. Rev. Let

    Phantom Accretion by Five Dimensional Charged Black Hole

    Full text link
    This paper deals with the dynamical behavior of phantom field near five dimensional charged black hole. We formulate equations of motion for steady-state spherically symmetric flow of phantom fluids. It is found that phantom energy accretes onto black holes for u<0u<0. Further, the location of critical point of accretion are evaluated that leads to mass to charge ratio for 5D charged black hole. This ratio implies that accretion cannot transform a black hole into a naked singularity. We would like to mention here that this work is an irreducible extension of 4D charged black hole.Comment: 8 pages, accepted for publication in Mod. Phys. Lett.
    • …
    corecore