401 research outputs found
The Spectral Autocorrelation Function in Weakly Open Chaotic Systems: Indirect Photodissociation of Molecules
We derive the statistical limit of the spectral autocorrelation function and
of the survival probability for the indirect photodissociation of molecules in
the regime of non-overlapping resonances. The results are derived in the
framework of random matrix theory, and hold more generally for any chaotic
quantum system that is weakly coupled to the continuum. The "correlation hole"
that characterizes the spectral autocorrelation in the bound molecule
diminishes as the typical average total width of a resonance increases.Comment: 13 pages, 1 Postscript figure included, RevTe
On Hubbard-Stratonovich Transformations over Hyperbolic Domains
We discuss and prove validity of the Hubbard-Stratonovich (HS) identities
over hyperbolic domains which are used frequently in the studies on disordered
systems and random matrices. We also introduce a counterpart of the HS identity
arising in disordered systems with "chiral" symmetry. Apart from this we
outline a way of deriving the nonlinear -model from the gauge-invariant
Wegner orbital model avoiding the use of the HS transformations.Comment: More accurate proofs are given; a few misprints are corrected; a
misleading reference and a footnote in the end of section 2.2 are remove
Statistics of resonance width shifts as a signature of eigenfunction non-orthogonality
We consider an open (scattering) quantum system under the action of a
perturbation of its closed counterpart. It is demonstrated that the resulting
shift of resonance widths is a sensitive indicator of the non-orthogonality of
resonance wavefunctions, being zero only if those were orthogonal. Focusing
further on chaotic systems, we employ random matrix theory to introduce a new
type of parametric statistics in open systems, and derive the distribution of
the resonance width shifts in the regime of weak coupling to the continuum.Comment: 4 pages, 1 figure (published version with minor changes
Freezing Transition in Decaying Burgers Turbulence and Random Matrix Dualities
We reveal a phase transition with decreasing viscosity at \nu=\nu_c>0
in one-dimensional decaying Burgers turbulence with a power-law correlated
random profile of Gaussian-distributed initial velocities
\sim|x-x'|^{-2}. The low-viscosity phase exhibits non-Gaussian
one-point probability density of velocities, continuously dependent on \nu,
reflecting a spontaneous one step replica symmetry breaking (RSB) in the
associated statistical mechanics problem. We obtain the low orders cumulants
analytically. Our results, which are checked numerically, are based on
combining insights in the mechanism of the freezing transition in random
logarithmic potentials with an extension of duality relations discovered
recently in Random Matrix Theory. They are essentially non mean-field in nature
as also demonstrated by the shock size distribution computed numerically and
different from the short range correlated Kida model, itself well described by
a mean field one step RSB ansatz. We also provide some insights for the finite
viscosity behaviour of velocities in the latter model.Comment: Published version, essentially restructured & misprints corrected. 6
pages, 5 figure
A conjecture on Hubbard-Stratonovich transformations for the Pruisken-Sch\"afer parameterisations of real hyperbolic domains
Rigorous justification of the Hubbard-Stratonovich transformation for the
Pruisken-Sch\"afer type of parameterisations of real hyperbolic
O(m,n)-invariant domains remains a challenging problem. We show that a naive
choice of the volume element invalidates the transformation, and put forward a
conjecture about the correct form which ensures the desired structure. The
conjecture is supported by complete analytic solution of the problem for groups
O(1,1) and O(2,1), and by a method combining analytical calculations with a
simple numerical evaluation of a two-dimensional integral in the case of the
group O(2,2).Comment: Published versio
The decay of photoexcited quantum systems: a description within the statistical scattering model
The decay of photoexcited quantum systems (examples are photodissociation of
molecules and autoionization of atoms) can be viewed as a half-collision
process (an incoming photon excites the system which subsequently decays by
dissociation or autoionization). For this reason, the standard statistical
approach to quantum scattering, originally developed to describe nuclear
compound reactions, is not directly applicable. Using an alternative approach,
correlations and fluctuations of observables characterizing this process were
first derived in [Fyodorov YV and Alhassid Y 1998 Phys. Rev. A 58, R3375]. Here
we show how the results cited above, and more recent results incorporating
direct decay processes, can be obtained from the standard statistical
scattering approach by introducing one additional channel.Comment: 7 pages, 2 figure
Correlation functions of impedance and scattering matrix elements in chaotic absorbing cavities
Wave scattering in chaotic systems with a uniform energy loss (absorption) is
considered. Within the random matrix approach we calculate exactly the energy
correlation functions of different matrix elements of impedance or scattering
matrices for systems with preserved or broken time-reversal symmetry. The
obtained results are valid at any number of arbitrary open scattering channels
and arbitrary absorption. Elastic enhancement factors (defined through the
ratio of the corresponding variance in reflection to that in transmission) are
also discussed.Comment: 10 pages, 2 figures (misprints corrected and references updated in
ver.2); to appear in Acta Phys. Pol. A (Proceedings of the 2nd Workshop on
Quantum Chaos and Localization Phenomena, May 19-22, 2005, Warsaw
Inhomogeneous losses and complexness of wave functions in chaotic cavities
In a two-dimensional microwave chaotic cavity Ohmic losses located at the contour of the cavity result in different broadenings of different modes. We provide an analytic description and establish the link between such an inhomogeneous damping and the complex (non-real) character of biorthogonal wave functions. This substantiates the corresponding recent experimental findings of Barthélemy et al. (Europhys. Lett., 70 (2005) 162)
- …