46 research outputs found

    Superconducting gap structure and pinning in disordered MgB2 films

    Full text link
    We have performed a comparative study of two thin films of magnesium diboride (MgB2) grown by different techniques. The critical current density at different temperatures and magnetic fields was evaluated from magnetisation curves, the structure of superconducting order parameter was obtained from point-contact spectroscopy, and the scattering rates were evaluated by fitting the temperature dependent normal-state resistivity to the two-band model. The films have similar critical temperatures close to 39 K, but the upper critical fields were different by a factor of 2 (5.2T and 2.5 T at 20 K). We have found that the film with higher Hc2 also had stronger scattering in the sigma band and smaller value of the superconducting gap in this band. As the scattering in sigma band is primarily due to the defects in boron plane, our results are consistent with the assumption that disordering the boron planes leads to enhanced Hc2 and better pinning properties in magnetic field.Comment: Paper presented at EUCAS'0

    Electron diffusivities in MgB2 from point contact spectroscopy

    Full text link
    We demonstrate that the variation of the Andreev reflection with applied magnetic field provides a direct means of comparing the properties of MgB2 with the theory for a dirty two-band superconductor, and we find good agreement between the two. The ratio of electron diffusivities in the s and p bands can be inferred from this experiment. We find that the field dependence of the density of states at the Fermi level in the p band is independent of the field direction, and that the anisotropic upper critical field is determined by the anisotropic diffusivity in the s band

    The effect of magnetic field on the two superconducting gaps in MgB2

    Full text link
    Double-gap superconductivity in an epitaxial MgB2 film has been studied by means of point-contact spectroscopy in magnetic field up to 8 Tesla. The relatively fast disappearance of the feature associated with the pi-band gap at a field around 1 T is caused by the line broadening due to strong pair breaking rather than to a collapse of the double-gap state. This pair breaking was found to increase linearly with field. Field dependences of the order parameters Delta_pi and Delta_sigma in the pi and sigma bands were measured in field applied parallel and perpendicular to the film, at T = 4.2 K. In perpendicular field, both order parameters survive to a common Hc2, which is about 6.5 T for this direction. In parallel field, the decrease of Delta_sigma is much more gradual, consistent with the Hc2 being about 4 times greater in this ori-entation. The difference in Delta_pi measured in the two field orientations is however smaller than the difference of Delta_sigma. We compare these results with the data on tunnelling spectroscopy and specific heat measurements of MgB2 single crystals and find consistency between the different experimental approaches.Comment: 4 pages, 5 figures Revised: discussion of the distribution of gap value

    Peak effect in single crystal MgB2_2 superconductor for Hc{\bf H}\parallel c-axis

    Full text link
    We have studied the phase diagram of MgB2_2 superconductor using a single crystal for Hc{\bf H}\parallel c-axis. For the first time we report the existence of peak effect in the screening current in MgB2_{2} single crystal for Hc{\bf H}\parallel c-axis. In the magnetic field regime 10<H<13.510<H<13.5 kOe the local fundamental diamagnetic moment displays a very narrow diamagnetic step, with a temperature width of the same size as the zero dc-magnetic field transition. For higher field this step is transformed to a peak which is related with the peak effect in the screening current. Finally, for H<10H<10 kOe the diamagnetic step is transformed to a gradual transition. Our findings for the vortex matter phase diagram for the MgB2_2 are closely related with theoretical predictions concerning the vortex matter phase diagram of a type II superconductor in the presence of weak point disorder.Comment: Has been submitted for publication in PRL since 21 February 200

    Multiband model for tunneling in MgB2 junctions

    Get PDF
    A theoretical model for quasiparticle and Josephson tunneling in multiband superconductors is developed and applied to MgB2-based junctions. The gap functions in different bands in MgB2 are obtained from an extended Eliashberg formalism, using the results of band structure calculations. The temperature and angle dependencies of MgB2 tunneling spectra and the Josephson critical current are calculated. The conditions for observing one or two gaps are given. We argue that the model may help to settle the current debate concerning two-band superconductivity in MgB2.Comment: minor corrections, published in Phys. Rev. B 65, 180517(R) (2002

    Specific heat of MgB2_2 in a one- and a two-band model from first-principles calculations

    Get PDF
    The heat capacity anomaly at the transition to superconductivity of the layered superconductor MgB2_2 is compared to first-principles calculations with the Coulomb repulsion, μ\mu^\ast, as the only parameter which is fixed to give the measured TcT_c. We solve the Eliashberg equations for both an isotropic one-band and a two-band model with different superconducting gaps on the π\pi and σ\sigma Fermi surfaces. The agreement with experiments is considerably better for the two-band model than for the one-band model.Comment: final published versio

    Magnetoresistivity and Complete Hc2(T)H_{c2}(T) in MgB2MgB_2

    Full text link
    Detailed magneto-transport data on dense wires of MgB2MgB_2 are reported for applied magnetic fields up to 18 T. The temperature and field dependencies of the electrical resistivity are consistent with MgB2MgB_2 behaving like a simple metal and following a generalized form of Kohler's rule. In addition, given the generally high TcT_c values and narrow resistive transition widths associated with MgB2MgB_2 synthesized in this manner, combined with applied magnetic fields of up to 18 T, an accurate and complete Hc2(T)H_{c2}(T) curve could be determined. This curve agrees well with curves determined from lower field measurements on sintered pellets and wires of MgB2MgB_2. Hc2(T)H_{c2}(T) is linear in TT over a wide range of temperature (7 K  T \le~T~\le 32 K) and has an upward curvature for TT close to TcT_c. These features are similar to other high κ\kappa, clean limit, boron-bearing intermetallics: YNi2B2CYNi_2B_2C and LuNi2B2CLuNi_2B_2C.Comment: minor changes in styl

    Effects of C, Cu and Be substitutions in superconducting MgB2

    Full text link
    Density functional calculations are used to investigate the effects of partial substitutional alloying of the B site in MgB2 with C and Be alone and combined with alloying of the Mg site with Cu. The effect of such substitutions on the electronic structure, electron phonon coupling and superconductivity are discussed. We find that Be substitution for B is unfavorable for superconductivity as it leads to a softer lattice and weaker electron-phonon couplings. Replacement of Mg by Cu leads to an increase in the stiffness and doping level at the same time, while the carrier concentration can be controlled by partial replacement of B by C. We estimate that with full replacement of Mg by Cu and fractional substitution of B by C, Tc values of 50K may be attainable.Comment: 5 pages, 4 figure

    Point-Contact Spectroscopy in MgB_2: from Fundamental Physics to Thin-Film Characterization

    Full text link
    In this paper we highlight the advantages of using point-contact spectroscopy (PCS) in multigap superconductors like MgB_2, both as a fundamental research tool and as a non-destructive diagnostic technique for the optimization of thin-film characteristics. We first present some results of crucial fundamental interest obtained by directional PCS in MgB_2 single crystals, for example the temperature dependence of the gaps and of the critical fields and the effect of a magnetic field on the gap amplitudes. Then, we show how PCS can provide useful information about the surface properties of MgB_2 thin films (e.g. Tc, gap amplitude(s), clean or dirty-limit conditions) in view of their optimization for the fabrication of tunnel and Josephson junctions for applications in superconducting electronics.Comment: 11 pages, 7 figures; Proceedings of 6th EUCAS Conference (14-18 September 2003, Sorrento - Italy

    Electron and hole transmission through superconductor - normal metal interfaces

    Full text link
    We have investigated the transmission of electrons and holes through interfaces between superconducting aluminum (Tc = 1.2 K) and various normal non-magnetic metals (copper, gold, palladium, platinum, and silver) using Andreev-reflection spectroscopy at T = 0.1 K. We analyzed the point contacts with the modified BTK theory that includes Dynes' lifetime as a fitting parameter G in addition to superconducting energy gap 2D and normal reflection described by Z. For contact areas from 1 nm^2 to 10000 nm^2 the BTK Z parameter was 0.5, corresponding to transmission coefficients of about 80 %, independent of the normal metal. The very small variation of Z indicates that the interfaces have a negligible dielectric tunneling barrier. Fermi surface mismatch does not account for the observed transmission coefficient.Comment: 9 pages, 4 figures, submitted to Proceedings of the 19th International Conference on Magnetism ICM2012 (Busan 2012
    corecore