855 research outputs found
Diameter dependence of ferromagnetic spin moment in Au nanocrystals
Au nanoparticles exhibit ferromagnetic spin polarization and show diameter
dependence in magnetization. The magnetic moment per Au atom in the particle
attains its maximum value at a diameter of about 3 nanometer (nm) in the
Magnetization-Diameter curve. Because Au metal is a typical diamagnetic
material, its ferromagnetic polarization mechanism is thought to be quite
different from the ferromagnetism observed in transition metals. The size
effect strongly suggests the existence of some spin correlation effect at the
nanoscale. The so-called ``Fermi hole effect'' is the most probable one given
in the free electron gas system. Ferromagnetism in Au nanoparticles is
discussed using this model.Comment: 5 pages, 6 figures, to appear in Phys. Rev.
Effects of nonlinear sweep in the Landau-Zener-Stueckelberg effect
We study the Landau-Zener-Stueckelberg (LZS) effect for a two-level system
with a time-dependent nonlinear bias field (the sweep function) W(t). Our main
concern is to investigate the influence of the nonlinearity of W(t) on the
probability P to remain in the initial state. The dimensionless quantity
epsilon = pi Delta ^2/(2 hbar v) depends on the coupling Delta of both levels
and on the sweep rate v. For fast sweep rates, i.e., epsilon << l and
monotonic, analytic sweep functions linearizable in the vicinity of the
resonance we find the transition probability 1-P ~= epsilon (1+a), where a>0 is
the correction to the LSZ result due to the nonlinearity of the sweep. Further
increase of the sweep rate with nonlinearity fixed brings the system into the
nonlinear-sweep regime characterized by 1-P ~= epsilon ^gamma with gamma neq 1
depending on the type of sweep function. In case of slow sweep rates, i.e.,
epsilon >>1 an interesting interference phenomenon occurs. For analytic W(t)
the probability P=P_0 e^-eta is determined by the singularities of sqrt{Delta
^2+W^2(t)} in the upper complex plane of t. If W(t) is close to linear, there
is only one singularity, that leads to the LZS result P=e^-epsilon with
important corrections to the exponent due to nonlinearity. However, for, e.g.,
W(t) ~ t^3 there is a pair of singularities in the upper complex plane.
Interference of their contributions leads to oscillations of the prefactor P_0
that depends on the sweep rate through epsilon and turns to zero at some
epsilon. Measurements of the oscillation period and of the exponential factor
would allow to determine Delta, independently.Comment: 11 PR pages, 12 figures. To be published in PR
Coarse-Grained Picture for Controlling Complex Quantum Systems
We propose a coarse-grained picture to control ``complex'' quantum dynamics,
i.e., multi-level-multi-level transition with a random interaction. Assuming
that optimally controlled dynamics can be described as a Rabi-like oscillation
between an initial and final state, we derive an analytic optimal field as a
solution to optimal control theory. For random matrix systems, we numerically
confirm that the analytic optimal field steers an initial state to a target
state which both contains many eigenstates.Comment: jpsj2.cls, 2 pages, 3 figure files; appear in J. Phys. Soc. Jpn.
Vol.73, No.11 (Nov. 15, 2004
Direct evidence for ferromagnetic spin polarization in gold nanoparticles
We report the first direct observation of ferromagnetic spin polarization of
Au nanoparticles with a mean diameter of 1.9 nm using X-ray magnetic circular
dichroism (XMCD). Owing to the element selectivity of XMCD, only the gold
magnetization is explored. Magnetization of gold atoms estimated by XMCD shows
a good agreement with the results obtained by conventional magnetometry. This
result is evidence of intrinsic spin polarization in nano-sized gold.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
- …