34 research outputs found

    Human plasma kallikrein and C1 inhibitor form a complex possessing an epitope that is not detectable on the parent molecules: demonstration using a monoclonal antibody.

    No full text
    The inactivation of human plasma kallikrein (EC 3.4.21.8) by the inhibitor of activated complement component 1 (C1 inhibitor) induces the formation of a 1:1 stoichiometric kallikrein-C1 inhibitor complex and a proteolytically modified form of C1 inhibitor. We have produced a monoclonal antibody that recognizes the kallikrein-C1 inhibitor complex as well as modified C1 inhibitor but fails to react with virgin C1 inhibitor or native plasma kallikrein. This observation constitutes an unequivocal demonstration that the reaction between plasma kallikrein and C1 inhibitor leads to the emergence of an epitope that is undetectable on the parent enzyme and inhibitor molecules

    Fibronectin degradation products containing the cytoadhesive tetrapeptide stimulate human neutrophil degranulation.

    No full text
    We investigated whether adhesive glycoproteins, such as fibronectin or fibrinogen, could function to provide a nidus for neutrophil degranulation. Elastase release in recalcified plasma was normal in afibrinogenemic plasma, but 73% less in plasma depleted of fibronectin. Proteolytic digests of fibronectin, but not intact fibronectin (50-1,000 micrograms/ml), induced a concentration-dependent release of neutrophil elastase and lactoferrin. MAbs N293, which recognized the mid-molecule of fibronectin, N294, which was directed toward the 11-kD cell adhesive fragment, and N295, generated against the amino terminal of the 11-kD fragment, inhibited the release of elastase by 7, 24, and 60%, respectively. The cytoadhesive tetrapeptide portion of fibronectin, Arg-Gly-Asp-Ser (250-1,000 micrograms/ml), released 1.94 +/- 0.10 micrograms/ml of elastase from 10(7) neutrophils, in contrast to the lack of release by the control hexapeptide, Arg-Gly-Tyr-Ser-Leu-Gly. Plasmin appeared to be the enzyme responsible for fibronectin cleavage, since neutrophil elastase release in plasma that had been depleted of plasminogen was decreased and reconstitution of plasminogen-deficient plasma with purified plasminogen corrected the abnormal release. Plasmin cleaved fibronectin to multiple degradation products, each less than 200 kD. This fibronectin digest released 1.05 microgram/ml of elastase from 10(7) neutrophils. We suggest that the activation of plasminogen leads to the formation of fibronectin degradation products capable of functioning as agonists for neutrophils

    Human neutrophils contain and bind high molecular weight kininogen.

    No full text
    Because plasma kallikrein activates human neutrophils, and in plasma prekallikrein (PK) circulates complexed with high molecular weight kininogen (HMWK), we determined whether HMWK could mediate kallikrein's association with neutrophils. HMWK antigen (237 +/- 61 ng HMWK/10(8) neutrophils) was present in lysates of washed human neutrophils. Little if any plasma HMWK was tightly bound and nonexchangeable with the neutrophil surface. Human neutrophils were found to possess surface membrane-binding sites for HMWK but no internalization was detected at 37 degrees C. 125I-HMWK binding to neutrophils was dependent upon Zn2+. Binding of 125I-HMWK to neutrophils was specific and 90% reversible. 125I-HMWK binding to neutrophils was saturable with an apparent Kd of 9-18 nM and 40,000-70,000 sites per cell. Upon binding to neutrophils, 125I-HMWK was proteolyzed by human neutrophil elastase (HNE) into lower relative molecular mass derivatives. Furthermore, HMWK found in neutrophils also served as a cofactor for HNE secretion because neutrophils deficient in HMWK have reduced HNE secretion when stimulated in plasma deficient in HMWK or with purified kallikrein. These studies indicate that human neutrophils contain a binding site for HMWK that could serve to localize plasma or neutrophil HMWK on their surface to possibly serve as a receptor for kallikrein and to participate in HNE secretion by this enzyme

    Purified plasma factor XIIa aggregates human neutrophils and causes degranulation

    No full text
    Plasma kallikrein has been shown to aggregate human neutrophils and release human neutrophil elastase. However, neutrophils resuspended in factor XII-deficient plasma released only 30% of the elastase compared with normal plasma. Isolated human neutrophils were aggregated in a concentration-dependent fashion by 0.06 to 0.6 U/mL factor XIIa (0.022 to 0.22 mumol/L). Factor XIIa (0.1 to 1.0 U/mL) also induced neutrophil degranulation as evidenced by a concentration-dependent release of the specific granule protein, lactoferrin, and azurophilic granule protease, elastase. The release of neutrophil elastase was biphasic, reaching 40% of maximum at 15 seconds with maximal release by 90 minutes. The active site of factor XIIa was required, since the synthetic inhibitor, D-Pro-Phe-Arg-CH2Cl, which reacts with an essential histidine, and the natural plasma inhibitor, Cl-inhibitor, which interacts with the critical serine, both inhibit by more than 90% the release of elastase. The heavy chain is also required, since factor XII fragments failed to aggregate neutrophils or stimulate degranulation. Factor XIIa (0.6 U/mL) can completely correct the defect in elastase release evident in factor XII-deficient plasma. These studies demonstrate that factor XIIa, at concentrations potentially obtainable in plasma in disease states, can activate neutrophils, and thus may participate in the inflammatory response

    Human neutrophils contain and bind high molecular weight kininogen.

    No full text

    Human plasma kallikrein releases neutrophil elastase during blood coagulation

    No full text
    Elastase is released from human neutrophils during the early events of blood coagulation. Human plasma kallikrein has been shown to stimulate neutrophil chemotaxis, aggregation, and oxygen consumption. Therefore, the ability of kallikrein to release neutrophil elastase was investigated. Neutrophils were isolated by dextran sedimentation, and elastase release was measured by both an enzyme-linked immunosorbent assay, and an enzymatic assay using t-butoxy-carbonyl-Ala-Ala-Pro-Val-amino methyl coumarin as the substrate. Kallikrein, 0.1-1.0 U/ml, (0.045-0.45 microM), was incubated with neutrophils that were preincubated with cytochalasin B (5 micrograms/ml). The release of elastase was found to be proportional to the kallikrein concentration. Kallikrein released a maximum of 34% of the total elastase content, as measured by solubilizing the neutrophils in the nonionic detergent Triton X-100. A series of experiments was carried out to determine if kallikrein was a major enzyme involved in neutrophil elastase release during blood coagulation. When 10 million neutrophils were incubated in 1 ml of normal plasma in the presence of 30 mM CaCl2 for 90 min, 2.75 micrograms of elastase was released. In contrast, neutrophils incubated in prekallikrein-deficient or Factor XII-deficient plasma released less than half of the elastase, as compared with normal plasma. The addition of purified prekallikrein to prekallikrein-deficient plasma restored neutrophil elastase release to normal levels. Moreover, release of elastase was enhanced in plasma deficient in C1-inhibitor, the major plasma inhibitor of kallikrein. This release was not dependent upon further steps in the coagulation pathway, or on C5a, since levels of elastase, released in Factor XI- or C5-deficient plasma, were similar to that in normal plasma, and an antibody to C5 failed to inhibit elastase release. These data suggest that kallikrein may be a major enzyme responsible for the release of elastase during blood coagulation
    corecore