51 research outputs found

    Tunneling mechanism in a (Ga,Mn)As/GaAs-based spin Esaki diode investigated by bias-dependent shot noise measurements

    Get PDF
    Electron transport across a tunneling barrier is governed by intricate and diverse causes such as interface conditions, material properties, and device geometries. Here, by measuring the shot noise, we investigate electron transport in a (Ga,Mn)As/GaAs-based spin Esaki diode junction over a wide range of bias voltage. The asymmetric electronic band profile across the junction allows us to tune the types of tunneling process. By changing the bias voltage in a single device, we successively address the conventional direct tunneling, the excess current conduction through the mid-gap localized states, and the thermal excitation current conduction. These observations lead to a proper comparison of the bias dependent Fano factors. While the Fano factor is unity for the direct tunneling, it is pronouncedly reduced in the excess current region. Thus, we have succeeded in evaluating several types of conduction process with the Fano factor in a single junction

    Cardiorespiratory Phase-Coupling Is Reduced in Patients with Obstructive Sleep Apnea

    Get PDF
    Cardiac and respiratory rhythms reveal transient phases of phase-locking which were proposed to be an important aspect of cardiorespiratory interaction. The aim of this study was to quantify cardio-respiratory phase-locking in obstructive sleep apnea (OSA). We investigated overnight polysomnography data of 248 subjects with suspected OSA. Cardiorespiratory phase-coupling was computed from the R-R intervals of body surface ECG and respiratory rate, calculated from abdominal and thoracic sensors, using Hilbert transform. A significant reduction in phase-coupling was observed in patients with severe OSA compared to patients with no or mild OSA. Cardiorespiratory phase-coupling was also associated with sleep stages and was significantly reduced during rapid-eye-movement (REM) sleep compared to slow-wave (SW) sleep. There was, however, no effect of age and BMI on phase coupling. Our study suggests that the assessment of cardiorespiratory phase coupling may be used as an ECG based screening tool for determining the severity of OSA

    Plasticity and rectangularity in survival curves

    Get PDF
    Living systems inevitably undergo a progressive deterioration of physiological function with age and an increase of vulnerability to disease and death. To maintain health and survival, living systems should optimize survival strategies with adaptive interactions among molecules, cells, organs, individuals, and environments, which arises plasticity in survival curves of living systems. In general, survival dynamics in a population is mathematically depicted by a survival rate, which monotonically changes from 1 to 0 with age. It would be then useful to find an adequate function to describe complicated survival dynamics. Here we describe a flexible survival function, derived from the stretched exponential function by adopting an age-dependent shaping exponent. We note that the exponent is associated with the fractal-like scaling in cumulative mortality rate. The survival function well depicts general features in survival curves; healthy populations exhibit plasticity and evolve towards rectangular-like survival curves, as examples in humans or laboratory animals
    corecore