964 research outputs found
Criticality Uncertainty Dependence on Nuclear Data Library in Fast Molten Salt Reactors
AbstractTo increase the sustainability of the nuclear fuel cycle, and increase security of nuclear energy, we have been inves- tigating Molten Salt Fast Reactors (MSFR) for transmutation of Minor actinoid (MA) isotopes. In the present work we describe the reactor physics analysis of a Th-TRU MSFR using a LiF-ThF4-TRUF3-fuel salt. We investigated the uncertainty of major reactor physics parameters using 3 sets of evaluated nuclear data: JENDL-4.0, JEFF-3.1.2, and ENDF/B-VII.1. The result of our work is that the spread in the multiplication factor is rather large between the sets of nuclear data, while other parameters are by and large the same. The uncertainties due to cross section covariance are large, with Th-232, U-233, and F-19 giving the most important contributions. The isotopic contributions to the uncertainties are quite different between the sets of nuclear data, giving a suspicion that the covariance data may is very different between the evaluations, and a review of the covariance data may be needed
Superconductor-insulator quantum phase transition in a single Josephson junction
The superconductor-to-insulator quantum phase transition in resistively
shunted Josephson junctions is investigated by means of path-integral Monte
Carlo simulations. This numerical technique allows us to directly access the
(previously unexplored) regime of the Josephson-to-charging energy ratios
E_J/E_C of order one. Our results unambiguously support an earlier theoretical
conjecture, based on renormalization-group calculations, that at T -> 0 the
dissipative phase transition occurs at a universal value of the shunt
resistance R_S = h/4e^2 for all values E_J/E_C. On the other hand,
finite-temperature effects are shown to turn this phase transition into a
crossover, which position depends significantly on E_J/E_C, as well as on the
dissipation strength and on temperature. The latter effect needs to be taken
into account in order to reconcile earlier theoretical predictions with recent
experimental results.Comment: 7 pages, 6 figure
Dynamics of solar wind protons reflected by the Moon
Solar system bodies that lack a significant atmosphere and significant
internal magnetic fields, such as the Moon and asteroids, have been considered
as passive absorbers of the solar wind. However, ion observations near the Moon
by the SELENE spacecraft show that a fraction of the impacting solar wind
protons are reflected by the surface of the Moon. Using new observations of the
velocity spectrum of these reflected protons by the SARA experiment on-board
the Chandrayaan-1 spacecraft at the Moon, we show by modeling that the
reflection of solar wind protons will affect the global plasma environment.
These global perturbations of the ion fluxes and the magnetic fields will
depend on microscopic properties of the object's reflecting surface. This solar
wind reflection process could explain past ion observations at the Moon, and
the process should occur universally at all atmosphereless non-magnetized
objects.Comment: 12 pages, 8 figure
The change of plasma C-reactive protein and metabolite concentrations, and MPS sick degree score in Landrase selected for resistance to MPS, Large Yorkshire selected for immune performances and the crossbreed
Swine Mycoplasma Hyopneumoniea, hp, is known as a major factor to affect for the specific pneumonia (MPS). This damages is very serious because carrier rate of hp in piglets from 3 to 4 months of age is very high, the rate of piglets that the response of antibody to hp shows positive is 80 % over, and the rate that has very terrible tissue from MPS is 51% in Japanese pig farm. We bred a resistant strain to MPS by selection to decrease MPS pathogenic condition over 5 generations using Landrase (MPS strain), and a high immune performance strain by selection for peripheral phagocytosis, complement activity and antibody production against erysipelatous vaccine using Large Yorkshire (HI strain)
The integrin inhibitor cilengitide enhances the anti-glioma efficacy of vasculostatin-expressing oncolytic virus
Oncolytic viral (OV) therapy has been considered as a promising treatment modality for brain tumors. Vasculostatin, the fragment of brain-specific angiogenesis inhibitor-1, shows anti-angiogenic activity against malignant gliomas. Previously, a vasculostatin-expressing oncolytic herpes simplex virus-1, Rapid Antiangiogenesis Mediated By Oncolytic virus (RAMBO), was reported to have a potent antitumor effect. Here, we investigated the therapeutic efficacy of RAMBO and cilengitide, an integrin inhibitor, combination therapy for malignant glioma. In vitro, tube formation was significantly decreased in RAMBO and cilengitide combination treatment compared with RAMBO or cilengitide monotherapy. Moreover, combination treatment induced a synergistic suppressive effect on endothelial cell migration compared with the control virus. RAMBO, combined with cilengitide, induced synergistic cytotoxicity on glioma cells. In the caspase-8 and -9 assays, the relative absorption of U87 Delta EGFR cell clusters treated with cilengitide and with RAMBO was significantly higher than that of those treated with control. In addition, the activity of caspase 3/7 was significantly increased with combination therapy. In vivo, there was a significant increase in the survival of mice treated with combination therapy compared with RAMBO or cilengitide monotherapy. These results indicate that cilengitide enhanced vasculostatin-expressing OV therapy for malignant glioma and provide a rationale for designing future clinical trials combining these two agents
Coulomb Blockade and Coherent Single-Cooper-Pair Tunneling in Single Josephson Junctions
We have measured the current-voltage characteristics of small-capacitance
single Josephson junctions at low temperatures (T < 0.04 K), where the strength
of the coupling between the single junction and the electromagnetic environment
was controlled with one-dimensional arrays of dc SQUIDs. We have clearly
observed Coulomb blockade of Cooper-pair tunneling and even a region of
negative differential resistance, when the zero-bias resistance of the SQUID
arrays is much higher than the quantum resistance h/e^2 = 26 kohm. The negative
differential resistance is evidence of coherent single-Cooper-pair tunneling in
the single Josephson junction.Comment: RevTeX, 4 pages with 6 embedded figure
- …