2 research outputs found

    Interaction Properties of the Periodic and Step-like Solutions of the Double-Sine-Gordon Equation

    Full text link
    The periodic and step-like solutions of the double-Sine-Gordon equation are investigated, with different initial conditions and for various values of the potential parameter ϵ\epsilon. We plot energy and force diagrams, as functions of the inter-soliton distance for such solutions. This allows us to consider our system as an interacting many-body system in 1+1 dimension. We therefore plot state diagrams (pressure vs. average density) for step-like as well as periodic solutions. Step-like solutions are shown to behave similarly to their counterparts in the Sine-Gordon system. However, periodic solutions show a fundamentally different behavior as the parameter ϵ\epsilon is increased. We show that two distinct phases of periodic solutions exist which exhibit manifestly different behavior. Response functions for these phases are shown to behave differently, joining at an apparent phase transition point.Comment: 17pages, 15 figure

    Static properties of multiple-sine-Gordon systems

    No full text
    In this paper, we examine some basic properties of the multiple-sine-Gordon (MSG) systems, which constitute a generalization of the celebrated sine-Gordon (SG) system. We start by showing how MSG systems can be viewed as a general class of periodic functions. Next, periodic and step-like solutions of these systems are discussed in some details. In particular, we study the static properties of such systems by considering slope and phase diagrams. We also use concepts like energy density and pressure to characterize and distinguish such solutions. We interpret these solutions as an interacting many body system, in which kinks and antikinks behave as extended particles. Finally, we provide a linear stability analysis of periodic solutions which indicates short wavelength solutions to be stable
    corecore