18,376 research outputs found
Geometric Tachyon to Universal Open String Tachyon
A system of k Neveu-Schwarz (NS) 5-branes of type II string theory with one
transverse direction compactified on a circle admits various unstable D-brane
systems, - some with geometric instability arising out of being placed at a
point of unstable equilibrium in space and some with the usual open string
tachyonic instability but no geometric instability. We discuss the effect of NS
5-branes on the descent relations among these branes and their physical
interpretation in the T-dual ALF spaces. We argue that if the tachyon potential
controlling these descent relations obeys certain conditions, then in certain
region in the parameter space labelling the background the two types of
unstable branes become identical via a second order phase transition, with the
geometric tachyon in one system getting mapped to the open string tachyon of
the other system. This would provide a geometric description of the tachyonic
instability of the usual non-BPS Dp-brane in ten dimensional flat space-time.Comment: LaTeX file, 30 page
Tachyon condensation in open-closed p-adic string theory
We study a simple model of p-adic closed and open strings. It sheds some
light on the dynamics of tachyon condensation for both types of strings. We
calculate the effect of static and decaying D-brane configurations on the
closed string background. For closed string tachyons we find lumps analogous to
D-branes. By studying their fluctuation spectrum and the D-branes they admit,
we argue that closed string lumps should be interpreted as spacetimes of lower
dimensionality described by some noncritical p-adic string theory.Comment: 21 pages, 3 figures; v2: discussion of the fluctuations of the double
lump substantially improve
Electromagnetic decays of vector mesons as derived from QCD sum rules
We apply the method of QCD sum rules in the presence of external
electromagnetic fields to the problem of the electromagnetic
decays of various vector mesons, such as , and . The induced condensates obtained previously
from the study of baryon magnetic moments are adopted, thereby ensuring the
parameter-free nature of the present calculation. Further consistency is
reinforced by invoking various QCD sum rules for the meson masses. The
numerical results on the various radiative decays agree very well with the
experimental data.Comment: To appear in Phys. Lett.
Synchronous solutions and their stability in nonlocally coupled phase oscillators with propagation delays
We study the existence and stability of synchronous solutions in a continuum
field of non-locally coupled identical phase oscillators with
distance-dependent propagation delays. We present a comprehensive stability
diagram in the parameter space of the system. From the numerical results a
heuristic synchronization condition is suggested, and an analytic relation for
the marginal stability curve is obtained. We also provide an expression in the
form of a scaling relation that closely follows the marginal stability curve
over the complete range of the non-locality parameter.Comment: accepted in Phys. Rev. E (2010
Power-law cosmological solution derived from DGP brane with a brane tachyon field
By studying a tachyon field on the DGP brane model, in order to embed the 4D
standard Friedmann equation with a brane tachyon field in 5D bulk, the metric
of the 5D spacetime is presented. Then, adopting the inverse square potential
of tachyon field, we obtain an expanding universe with power-law on the brane
and an exact 5D solution.Comment: 8 pages, 1 figure, accepted by IJMP
Ricci-flat deformation of orbifolds and localized tachyonic modes
We study Ricci-flat deformations of orbifolds in type II theory. We obtain a
simple formula for mass corrections to the twisted modes due to the
deformations, and apply it to originally tachyonic and massless states in
several examples. In the case of supersymmetric orbifolds, we find that
tachyonic states appear when the deformation breaks all the supersymmetries. We
also study nonsupersymmetric orbifolds C^2/Z_{2N(2N+1)}, which is T-dual to N
type 0 NS5-branes. For N>=2, we compute mass corrections for states, which have
string scale tachyonic masses. We find that the corrected masses coincide to
ones obtained by solving the wave equation for the tachyon field in the smeared
type 0 NS5-brane background geometry. For N=1, we show that the unstable mode
representing the bubble creation is the unique tachyonic mode.Comment: 20 pages, minor collection
Electron correlation and Fermi surface topology of NaCoO
The electronic structure of NaCoO revealed by recent photoemission
experiments shows important deviations from band theory predictions. The six
small Fermi surface pockets predicted by LDA calculations have not been
observed as the associated band fails to cross the Fermi level for
a wide range of sodium doping concentration . In addition, significant
bandwidth renormalizations of the complex have been observed. We show
that these discrepancies are due to strong electronic correlations by studying
the multi-orbital Hubbard model in the Hartree-Fock and strong-coupling
Gutzwiller approximation. The quasiparticle dispersion and the Fermi surface
topology obtained in the presence of strong local Coulomb repulsion are in good
agreement with experiments.Comment: 5 pages, 4 figures, revtex4; minor changes, to be published in Phys.
Rev. Let
- …