1,364 research outputs found

    Methane production in an anaerobic osmotic membrane bioreactor using forward osmosis: Effect of reverse salt flux

    Full text link
    © 2017 Elsevier Ltd This study investigated the impact of reverse salt flux (RSF) on microbe community and bio-methane production in a simulated fertilizer driven FO-AnMBR system using KCl, KNO3 and KH2PO4 as draw solutes. Results showed that KH2PO4 exhibited the lowest RSF in terms of molar concentration 19.1 mM/(m2.h), while for KCl and KNO3 it was 32.2 and 120.8 mM/(m2.h), respectively. Interestingly, bio-methane production displayed an opposite order with KH2PO4, followed by KCl and KNO3. Pyrosequencing results revealed the presence of different bacterial communities among the tested fertilizers. Bacterial community of sludge exposed to KH2PO4 was very similar to that of DI-water and KCl. However, results with KNO3 were different since the denitrifying bacteria were found to have a higher percentage than the sludge with other fertilizers. This study demonstrated that RSF has a negative effect on bio-methane production, probably by influencing the sludge bacterial community via environment modification

    Possible Verification of Tilted Anisotropic Dirac Cone in \alpha-(BEDT-TTF)_2 I_3 Using Interlayer Magnetoresistance

    Full text link
    It is proposed that the presence of a tilted and anisotropic Dirac cone can be verified using the interlayer magnetoresistance in the layered Dirac fermion system, which is realized in quasi-two-dimensional organic compound \alpha-(BEDT-TTF)_2 I_3. Theoretical formula is derived using the analytic Landau level wave functions and assuming local tunneling of electrons. It is shown that the resistivity takes the maximum in the direction of the tilt if anisotropy of the Fermi velocity of the Dirac cone is small. The procedure is described to determine the parameters of the tilt and anisotropy.Comment: 4 pages, 4 figures, corrected Fig.

    Visible light responsive titanium dioxide (TiO<inf>2</inf>)

    Full text link
    Titanium dioxide (TiO2) is one of the most researched semiconductor oxides that has revolutionised technologies in the field of environmental purification and energy generation. It has found extensive applications in heterogenous photocatalysis for removing organic pollutants from air and water and also in hydrogen production from photocatalytic water-splitting. Its use is popular because of its low cost, low toxicity, high chemical and thermal stability, But one of the critical limitations of TiO 2 as photocatalyst is its poor response to visible light. Several attempts have been made to modify the surface and electronic structures of TiO2 to enhance its activity in the visible light region such as noble metal deposition, metal ion loading, cationic and anionic doping and sensitisation, Most of the results improved photocatalytic performance under visible light irradiation. This paper attempts to review and update some of the information on the TiO2 photocatalytic technology and its accomplishment towards visible light region

    Performance of a novel baffled osmotic membrane bioreactor-microfiltration hybrid system under continuous operation for simultaneous nutrient removal and mitigation of brine discharge

    Full text link
    © 2017 Elsevier Ltd The present study investigated the performance of an integrated osmotic and microfiltration membrane bioreactor system for wastewater treatment employing baffles in the reactor. Thus, this reactor design enables both aerobic and anoxic processes in an attempt to reduce the process footprint and energy costs associated with continuous aeration. The process performance was evaluated in terms of water flux, salinity build up in the bioreactor, organic and nutrient removal and microbial activity using synthetic reverse osmosis (RO) brine as draw solution (DS). The incorporation of MF membrane was effective in maintaining a reasonable salinity level (612–1434 mg/L) in the reactor which resulted in a much lower flux decline (i.e. 11.48–6.98 LMH) as compared to previous studies. The stable operation of the osmotic membrane bioreactor–forward osmosis (OMBR-FO) process resulted in an effective removal of both organic matter (97.84%) and nutrient (phosphate 87.36% and total nitrogen 94.28%), respectively

    Assessing the removal of organic micro-pollutants from anaerobic membrane bioreactor effluent by fertilizer-drawn forward osmosis

    Full text link
    © 2017 Elsevier B.V. In this study, the behavior of organic micro-pollutants (OMPs) transport including membrane fouling was assessed in fertilizer-drawn forward osmosis (FDFO) during treatment of the anaerobic membrane bioreactor (AnMBR) effluent. The flux decline was negligible when the FO membrane was oriented with active layer facing feed solution (AL-FS) while severe flux decline was observed with active layer facing draw solution (AL-DS) with di-ammonium phosphate (DAP) fertilizer as DS due to struvite scaling inside the membrane support layer. DAP DS however exhibited the lowest OMPs forward flux or higher OMPs rejection rate compared to other two fertilizers (i.e., mono-ammonium phosphate (MAP) and KCl). MAP and KCl fertilizer DS had higher water fluxes that induced higher external concentration polarization (ECP) and enhanced OMPs flux through the FO membrane. Under the AL-DS mode of membrane orientation, OMPs transport was further increased with MAP and KCl as DS due to enhanced concentrative internal concentration polarization while with DAP the internal scaling enhanced mass transfer resistance thereby lowering OMPs flux. Physical or hydraulic cleaning could successfully recover water flux for FO membranes operated under the AL-FS mode but only partial flux recovery was observed for membranes operated under AL-DS mode because of internal scaling and fouling in the support layer. Osmotic backwashing could however significantly improve the cleaning efficiency

    Chronic deep brain stimulation of subthalamic and anterior thalamic nuclei for controlling refractory partial epilepsy

    Get PDF
    Summary Objectives. Experimental data and case reports of intractable epilepsy patients treated with deep brain stimulation (DBS) of the internal nuclei suggest a considerable anticonvulsant effect. We intended to describe the results of DBS on subthalamic nuclei and anterior thalamic nuclei (STN and ATN) from our patients and to evaluate the long-term efficiency and safety of DBS for controlling intractable epilepsy. Methods. Six patients with refractory epilepsy and inadequate for surgery were implanted with DBS electrodes (3 in STN and 3 in ATN, respectively), switched on after a week of insertion followed by chronological observation. Seizure counts were monitored and compared with pre-implantation baseline. Results. There was significant clinical improvement in respect of reduction of seizure frequency as well as the alleviation of ictal severity in almost patients. The mean reduction in seizure frequency was 62.3% (49.1% from STN vs. 75.4% from ATN). Except one patient (patient 3) with accidental infection on the right anterior chest, no complication or withdrawal of DBS was seen during our study. Conclusion. DBS on STN and ATN demonstrated their clear efficiency and relative safety comparable or superior to previous studies during long term follow-up. Subsequent, well designed studies warrant the further increase of the knowledge about antiepileptic effect of DBS

    Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution

    Full text link
    © 2017 Elsevier B.V. This study investigated the sustainable reuse of wastewater using fertilizer drawn forward osmosis (FDFO) process through osmotic dilution of commercial nutrient solution for hydroponics, a widely used technique for growing plants without soil. Results from the bench-scale experiments showed that the commercial hydroponic nutrient solution (i.e. solution containing water and essential nutrients) exhibited similar performance (i.e., water flux and reverse salt flux) to other inorganic draw solutions when treating synthetic wastewater. The use of hydroponic solution is highly advantageous since it provides all the required macro- (i.e., N, P and K) and micronutrients (i.e., Ca, Mg, S, Mn, B, Zn and Mo) in a single balanced solution and can therefore be used directly after dilution without the need to add any elements. After long-term operation (i.e. up to 75% water recovery), different physical cleaning methods were tested and results showed that hydraulic flushing can effectively restore up to 75% of the initial water flux while osmotic backwashing was able to restore the initial water flux by more than 95%; illustrating the low-fouling potential of the FDFO process. Pilot-scale studies demonstrated that the FDFO process is able to produce the required nutrient concentration and final water quality (i.e., pH and conductivity) suitable for hydroponic applications. Coupling FDFO with pressure assisted osmosis (PAO) in the later stages could help in saving operational costs (i.e., energy and membrane replacement costs). Finally, the test application of nutrient solution produced by the pilot FDFO process to hydroponic lettuce showed similar growth pattern as the control without any signs of nutrient deficiency

    Chemically Cross-Linked Graphene Oxide as a Selective Layer on Electrospun Polyvinyl Alcohol Nanofiber Membrane for Nanofiltration Application.

    Full text link
    Graphene oxide (GO) nanosheets were utilized as a selective layer on a highly porous polyvinyl alcohol (PVA) nanofiber support via a pressure-assisted self-assembly technique to synthesize composite nanofiltration membranes. The GO layer was rendered stable by cross-linking the nanosheets (GO-to-GO) and by linking them onto the support surface (GO-to-PVA) using glutaraldehyde (GA). The amounts of GO and GA deposited on the PVA substrate were varied to determine the optimum nanofiltration membrane both in terms of water flux and salt rejection performances. The successful GA cross-linking of GO interlayers and GO-PVA via acetalization was confirmed by FTIR and XPS analyses, which corroborated with other characterization results from contact angle and zeta potential measurements. Morphologies of the most effective membrane (CGOPVA-50) featured a defect-free GA cross-linked GO layer with a thickness of ~67 nm. The best solute rejections of the CGOPVA-50 membrane were 91.01% for Na2SO4 (20 mM), 98.12% for Eosin Y (10 mg/L), 76.92% for Methylene blue (10 mg/L), and 49.62% for NaCl (20 mM). These findings may provide one of the promising approaches in synthesizing mechanically stable GO-based thin-film composite membranes that are effective for solute separation via nanofiltration

    Hydrogen production affected by Pt concentration on TiO <inf>2</inf> produced from the incineration of dye wastewater flocculated sludge using titanium tetrachloride

    Full text link
    TiO 2 from the incineration of dye wastewater flocculated sludge using TiCl 4 coagulant was produced. Optimal catalyst amount and Pt-loading on TiO 2 were studied for the production of H 2 by photocatalytic reforming of methanol (6% vol.). On the other hand, BTSE (biologically treated sewage effluent) was flocculated using TiCl4 and produced sludge was incinerated to generate TiO 2 . TiO 2 was loaded with optimum Pt and added to the supernatant in a photocatalytic reactor to test the efficiency of using remaining organics as a “sacrificial reagent” for photocatalytic hydrogen production. Dissolved organic carbon (DOC) and molecular weight distribution (MWD) were measured for nanofiltration (NF) and TiCl 4 flocculation followed by photocatalysis. TiO 2 (from the incineration of BTSE flocculated sludge using TiCl4) was produced and loaded with 0.5% Pt. Results showed that the optimum concentration of TiO 2 (from dye wastewater) for H 2 production was 0.3 g/L, while the optimum amount of Pt was 0.5%. DOC and MWD removal was similar for the flocculation of BTSE followed by photocatalytic reaction and the NF process. Remaining organic compounds after flocculation could not be used as sacrificial reagent to induce H 2 production. Further investigations on studying the UV intensity and/or identifying organic/inorganic scavengers to inhibit H 2 production are underway. © 2010, Taylor & Francis Group, LLC
    • …
    corecore