17,529 research outputs found

    Specific heat and thermal conductivity of ferromagnetic magnons in Yttrium Iron Garnet

    Full text link
    The specific heat and thermal conductivity of the insulating ferrimagnet Y3_3Fe5_5O12_{12} (Yttrium Iron Garnet, YIG) single crystal were measured down to 50 mK. The ferromagnetic magnon specific heat CCm_m shows a characteristic T1.5T^{1.5} dependence down to 0.77 K. Below 0.77 K, a downward deviation is observed, which is attributed to the magnetic dipole-dipole interaction with typical magnitude of 104^{-4} eV. The ferromagnetic magnon thermal conductivity κm\kappa_m does not show the characteristic T2T^2 dependence below 0.8 K. To fit the κm\kappa_m data, both magnetic defect scattering effect and dipole-dipole interaction are taken into account. These results complete our understanding of the thermodynamic and thermal transport properties of the low-lying ferromagnetic magnons.Comment: 5 pages, 5 figure

    Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2

    Full text link
    The in-plane resistivity ρ\rho and thermal conductivity κ\kappa of FeAs-based superconductor KFe2_2As2_2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior ρ(T)T1.5\rho(T) \sim T^{1.5} at Hc2H_{c_2} = 5 T, and the development of a Fermi liquid state with ρ(T)T2\rho(T) \sim T^2 when further increasing field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field Hc2H_{c_2}. In zero field there is a large residual linear term κ0/T\kappa_0/T, and the field dependence of κ0/T\kappa_0/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2_2As2_2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.Comment: 4 pages, 4 figures - replaces arXiv:0909.485

    Universal Tomonaga-Luttinger liquid phases in one-dimensional strongly attractive SU(N) fermionic cold atoms

    Full text link
    A simple set of algebraic equations is derived for the exact low-temperature thermodynamics of one-dimensional multi-component strongly attractive fermionic atoms with enlarged SU(N) spin symmetry and Zeeman splitting. Universal multi-component Tomonaga-Luttinger liquid (TLL) phases are thus determined. For linear Zeeman splitting, the physics of the gapless phase at low temperatures belongs to the universality class of a two-component asymmetric TLL corresponding to spin-neutral N-atom composites and spin-(N-1)/2 single atoms. The equation of states is also obtained to open up the study of multi-component TLL phases in 1D systems of N-component Fermi gases with population imbalance.Comment: 12 pages, 3 figure

    A surface defect detection method of the magnesium alloy sheet based on deformable convolution neural network

    Get PDF
    In the rolling process of the magnesium alloy sheet, due to improper control parameters or inaccurate production equipment and other reasons, the surface of the magnesium alloy sheet is prone to appearance of edge crack, fold, inclusion, ripple, scratch and other defects. In order to improve the surface quality of the magnesium alloy sheet, a surface defect detection method based on deformable convolution neural network is proposed in the paper, which presents a higher detection accuracy than those traditional methods on the convolutional neural network (CNN), support vector machine (SVM) and Bayes. The experiment result shows the final detecting accuracy is greater than 95 %

    Thermal-magnetic noise measurement of spin-torque effects on ferromagnetic resonance in MgO-based magnetic tunnel junctions

    Full text link
    Thermal-magnetic noise at ferromagnetic resonance (T-FMR) can be used to measure magnetic perpendicular anisotropy of nanoscale magnetic tunnel junctions (MTJs). For this purpose, T-FMR measurements were conducted with an external magnetic field up to 14 kOe applied perpendicular to the film surface of MgO-based MTJs under a dc bias. The observed frequency-field relationship suggests that a 20 A CoFeB free layer has an effective demagnetization field much smaller than the intrinsic bulk value of CoFeB, with 4PiMeff = (6.1 +/- 0.3) kOe. This value is consistent with the saturation field obtained from magnetometry measurements on extended films of the same CoFeB thickness. In-plane T-FMR on the other hand shows less consistent results for the effective demagnetization field, presumably due to excitations of more complex modes. These experiments suggest that the perpendicular T-FMR is preferred for quantitative magnetic characterization of nanoscale MTJs.Comment: 10 pages, 3 figures, accepted by AP

    Organizing information on the next generation web - Design and implementation of a new bookmark structure

    Get PDF
    The next-generation Web will increase the need for a highly organized and ever evolving method to store references to Web objects. These requirements could be realized by the development of a new bookmark structure. This paper endeavors to identify the key requirements of such a bookmark, specifically in relation to Web documents, and sets out a suggested design through which these needs may be accomplished. A prototype developed offers such features as the sharing of bookmarks between users and groups of users. Bookmarks for Web documents in this prototype allow more specific information to be stored such as: URL, the document type, the document title, keywords, a summary, user annotations, date added, date last visited and date last modified. Individuals may access the service from anywhere on the Internet, as long as they have a Java-enabled Web browser
    corecore