2,783 research outputs found

    Bound state spectra of three-body muonic molecular ions

    Full text link
    The results of highly accurate calculations are presented for all twenty-two known bound S(L=0)−,P(L=1)−,D(L=2)−S(L = 0)-, P(L = 1)-, D(L = 2)- and F(L=3)−F(L = 3)-states in the six three-body muonic molecular ions ppμ,pdμ,ptμ,ddμ,dtμpp\mu, pd\mu, pt\mu, dd\mu, dt\mu and ttμtt\mu. A number of bound state properties of these muonic molecular ions have been determined numerically to high accuracy. The dependence of the total energies of these muonic molecules upon particle masses is considered. We also discuss the current status of muon-catalysis of nuclear fusion reactions.Comment: This is the final version. All `techical' troubles with the Latex-file have been resolved. A few misprints/mistakes in the text were correcte

    Analytic Evaluation of Four-Particle Integrals with Complex Parameters

    Full text link
    The method for analytic evaluation of four-particle integrals, proposed by Fromm and Hill, is generalized to include complex exponential parameters. An original procedure of numerical branch tracking for multiple valued functions is developed. It allows high precision variational solution of the Coulomb four-body problem in a basis of exponential-trigonometric functions of interparticle separations. Numerical results demonstrate high efficiency and versatility of the new method.Comment: 13 pages, 4 figure

    Measurement of spin-dependent conductivities in a two-dimensional electron gas

    Full text link
    Spin accumulation is generated by injecting an unpolarized charge current into a channel of GaAs two-dimensional electron gas subject to an in-plane magnetic field, then measured in a non-local geometry. Unlike previous measurements that have used spin-polarized nanostructures, here the spin accumulation arises simply from the difference in bulk conductivities for spin-up and spin-down carriers. Comparison to a diffusive model that includes spin subband splitting in magnetic field suggests a significantly enhanced electron spin susceptibility in the 2D electron gas

    Nuclear Polarization in Quantum Point Contacts in an In-Plane Magnetic Field

    Full text link
    Nuclear spin polarization is typically generated in GaAs quantum point contacts (QPCs) when an out-of-plane magnetic field gives rise to spin-polarized quantum Hall edge states, and a voltage bias drives transitions between the edge states via electron-nuclear flip-flop scattering. Here, we report a similar effect for QPCs in an in-plane magnetic field, where currents are spin polarized but edge states are not formed. The nuclear polarization gives rise to hysteresis in the d.c. transport characteristics, with relaxation timescales around 100 seconds. The dependence of anomalous QPC conductance features on nuclear polarization provides a useful test of their spin-sensitivity.Comment: 5 page

    SO(N) invariant Wess-Zumino action and its quantization

    Full text link
    A consistent quantization procedure of anomalous chiral models is discussed. It is based on the modification of the classical action by adding Wess-Zumino terms. The SO(3)SO(3) invariant WZ action for the SO(3)SO(3) model is constructed. Quantization of the corresponding modified theory is considered in details.Comment: 22 pages, LaTe

    Giant Magnons under NS-NS and Melvin Fields

    Get PDF
    The giant magnon is a rotating spiky string configuration which has the same dispersion relation between the energy and angular momentum as that of a spin magnon. In this paper we investigate the effects of the NS-NS and Melvin fields on the giant magnon. We first analyze the energy and angular momenta of the two-spin spiky D-string moving on the AdS3×S1AdS_3\times S^1 with the NS-NS field. Due to the infinite boundary of the AdS spacetime the D-string solution will extend to infinity and it appears the divergences. After adding the counter terms we obtain the dispersion relation of the corresponding giant magnon. The result shows that there will appear a prefactor before the angular momentum, in addition to some corrections in the sine function. We also see that the spiky profile of a rotating D-string plays an important role in mapping it to a spin magnon. We next investigate the energy and angular momentum of the one-spin spiky fundamental string moving on the R×S2R \times S^2 with the electric or magnetic Melvin field. The dispersion relation of the corresponding deformed giant magnon is also obtained. We discuss some properties of the correction terms and their relations to the spin chain with deformations.Comment: Latex 20 pages, mention D-string and add reference

    New representation of orbital motion with arbitrary angular momenta

    Full text link
    A new formulation is presented for a variational calculation of NN-body systems on a correlated Gaussian basis with arbitrary angular momenta. The rotational motion of the system is described with a single spherical harmonic of the total angular momentum LL, and thereby needs no explicit coupling of partial waves between particles. A simple generating function for the correlated Gaussian is exploited to derive the matrix elements. The formulation is applied to various Coulomb three-body systems such as e−e−e+,ttμ,tdμe^-e^-e^+, tt\mu, td\mu, and αe−e−\alpha e^-e^- up to L=4L=4 in order to show its usefulness and versatility. A stochastic selection of the basis functions gives good results for various angular momentum states.Comment: Revte
    • …
    corecore