15,821 research outputs found

    On the Nature of X(4260)

    Full text link
    We study the property of X(4260)X(4260) resonance by re-analyzing all experimental data available, especially the e+e−→J/ψ π+π−,   ωχc0e^+e^- \rightarrow J/\psi\,\pi^+\pi^-,\,\,\,\omega\chi_{c0} cross section data. The final state interactions of the ππ\pi\pi, KKˉK\bar K couple channel system are also taken into account. A sizable coupling between the X(4260)X(4260) and ωχc0\omega\chi_{c0} is found. The inclusion of the ωχc0\omega\chi_{c0} data indicates a small value of Γe+e−=23.30±3.55\Gamma_{e^+e^-}=23.30\pm 3.55eV.Comment: Refined analysis with new experimental data included. 13 page

    Understanding the white-light flare on 2012 March 9 : Evidence of a two-step magnetic reconnection

    Full text link
    We attempt to understand the white-light flare (WLF) that was observed on 2012 March 9 with a newly constructed multi-wavelength solar telescope called the Optical and Near-infrared Solar Eruption Tracer (ONSET). We analyzed WLF observations in radio, H-alpha, white-light, ultraviolet, and X-ray bands. We also studied the magnetic configuration of the flare via the nonlinear force-free field (NLFFF) extrapolation and the vector magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Continuum emission enhancement clearly appeared at the 3600 angstrom and 4250 angstrom bands, with peak contrasts of 25% and 12%, respectively. The continuum emission enhancement closely coincided with the impulsive increase in the hard X-ray emission and a microwave type III burst at 03:40 UT. We find that the WLF appeared at one end of either the sheared or twisted field lines or both. There was also a long-lasting phase in the H-alpha and soft X-ray bands after the white-light emission peak. In particular, a second, yet stronger, peak appeared at 03:56 UT in the microwave band. This event shows clear evidence that the white-light emission was caused by energetic particles bombarding the lower solar atmosphere. A two-step magnetic reconnection scenario is proposed to explain the entire process of flare evolution, i.e., the first-step magnetic reconnection between the field lines that are highly sheared or twisted or both, and the second-step one in the current sheet, which is stretched by the erupting flux rope. The WLF is supposed to be triggered in the first-step magnetic reconnection at a relatively low altitude.Comment: 4 pages, 4 figures, published in A&A Lette

    Anisotropic but nodeless superconducting gap in the presence of spin density wave in iron-pnictide superconductor NaFe1-xCoxAs

    Full text link
    The coexisting regime of spin density wave (SDW) and superconductivity in the iron pnictides represents a novel ground state. We have performed high resolution angle-resolved photoemission measurements on NaFe1-xCoxAs (x = 0.0175) in this regime and revealed its distinctive electronic structure, which provides some microscopic understandings of its behavior. The SDW signature and the superconducting gap are observed on the same bands, illustrating the intrinsic nature of the coexistence. However, because the SDW and superconductivity are manifested in different parts of the band structure, their competition is non-exclusive. Particularly, we found that the gap distribution is anisotropic and nodeless, in contrast to the isotropic superconducting gap observed in an SDW-free NaFe1-xCoxAs (x=0.045), which puts strong constraints on theory.Comment: 5 pages, 4 figures + supplementary informatio
    • …
    corecore