29,482 research outputs found

    Searches for New Physics in the Top Sector at the Tevatron

    Full text link
    The top quark, discovered in 1995 by the CDF and D0 collaborations at the Tevatron collider at Fermilab, is the heaviest known elementary particle today. Due to its high mass and short lifetime, the top quark plays a special role in searching for physics beyond the Standard Model. In this article, recent results of searches for new physics in the top sector, performed by CDF and D0, are presented. In particular, we discuss the search for ttbar resonances, for tj resonances, the search for heavy fourth generation quarks, for dark matter produced in association with single tops, the study of anomalous couplings, the search for boosted top quarks as well as the analysis of Lorentz Invariance violation in the top quark sector.Comment: 4 pages, proceedings for the DIS2012 conference, Bonn, German

    Top Quark Studies at D0

    Full text link
    Years after its discovery in 1995 by CDF and D0, the top quark still undergoes intense investigations at the Tevatron. Using up to the full Run~II data sample, new measurements of top quark production and properties by the D0 Collaboration are presented. In particular, the first observation of single top quark s-channel production, the measurement of differential ttbar distributions, forward-backward ttbar asymmetry, a new measurement of the top quark mass, and a measurement of the top quark charge are discussed.Comment: 4 pages, 2 figures, proceedings for BEACH2014 conference, Birmingham, U

    Optimization of rotor blades for combined structural, performance, and aeroelastic characteristics

    Get PDF
    The strategies whereby helicopter rotor blades can be optimized for combined structural, inertial, dynamic, aeroelastic, and aerodynamic performance characteristics are outlined. There are three key ingredients in the successful execution of such an interdisciplinary optimization. The first is the definition of a satisfactory performance index that combines all aspects of the problem without too many constraints. The second element is the judicious choice of computationally efficient analysis tools for the various quantitative components in both the cost functional and constraints. The third element is an effective strategy for combining the various disciplines either in parallel or sequential optimizations

    Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-moments

    Get PDF
    This paper discusses different classes of loss models in non-life insurance settings. It then overviews the class Tukey transform loss models that have not yet been widely considered in non-life insurance modelling, but offer opportunities to produce flexible skewness and kurtosis features often required in loss modelling. In addition, these loss models admit explicit quantile specifications which make them directly relevant for quantile based risk measure calculations. We detail various parameterizations and sub-families of the Tukey transform based models, such as the g-and-h, g-and-k and g-and-j models, including their properties of relevance to loss modelling. One of the challenges with such models is to perform robust estimation for the loss model parameters that will be amenable to practitioners when fitting such models. In this paper we develop a novel, efficient and robust estimation procedure for estimation of model parameters in this family Tukey transform models, based on L-moments. It is shown to be more robust and efficient than current state of the art methods of estimation for such families of loss models and is simple to implement for practical purposes.Comment: 42 page

    Conditions for extreme sensitivity of protein diffusion in membranes to cell environments

    Full text link
    We study protein diffusion in multicomponent lipid membranes close to a rigid substrate separated by a layer of viscous fluid. The large-distance, long-time asymptotics for Brownian motion are calculated using a nonlinear stochastic Navier-Stokes equation including the effect of friction with the substrate. The advective nonlinearity, neglected in previous treatments, gives only a small correction to the renormalized viscosity and diffusion coefficient at room temperature. We find, however, that in realistic multicomponent lipid mixtures, close to a critical point for phase separation, protein diffusion acquires a strong power-law dependence on temperature and the distance to the substrate HH, making it much more sensitive to cell environment, unlike the logarithmic dependence on HH and very small thermal correction away from the critical point.Comment: 19 pages, 4 figure
    • …
    corecore