87 research outputs found

    Cromoglycate and nedocromil enhanced the reactive oxygen species-dependent suppressions with, but not without, dexamethasone in ischaemic and histamine paw oedema of mice

    Get PDF
    Anti-inflammatory actions of two anti-allergic drugs, alone or with dexamethasone (Dex) were examined in two models, because inflammation is claimed to be important for allergic events, especially for asthma. Cromoglycate and nedocromil were tested in ischaemic- and histamineinduced paw oedema models of mice. These antiallergic drugs (1–100 mg/kg, i.p.) failed to suppress these oedemata, but enhanced the suppressions by a low dose of dexamethasone (0.1 mg/kg, s.c.) at 3–8 h after Dex injection. The mode of effects by anti-allergic drugs resembled that of a natural antioxidant (α-tocopherol, β-carotene etc.), and was different from that of an immunosuppressant like FK506. The enhancing potencies of the two anti-allergic drugs were similar at 6 h after Dex in both oedemata, and were diminished by superoxide dismutase (SOD) or catalase (i.p.). Cycloheximide completely abolished suppressions. Nedocromil, but not cromoglycate, inhibits inflammatory events. Therefore, there are common unknown actions by which the two anti-allergics enhance suppression by Dex. A possible mechanism of this action was supposed to enhance the superoxide and/or hydrogen peroxide-dependent glucocorticoid receptor (GR) signalling in the target cells

    Studies on possibility for alleviation of lifestyle diseases by low-dose irradiation or radon inhalation

    Get PDF
    Our previous studies showed the possibility that activation of the antioxidative function alleviates various oxidative damages, which are related to lifestyle diseases. Results showed that, low-dose X-ray irradiation activated superoxide dismutase and inhibits oedema following ischaemia-reperfusion. To alleviate ischaemia-reperfusion injury with transplantation, the changes of the antioxidative function in liver graft using low-dose X-ray irradiation immediately after exenteration were examined. Results showed that liver grafts activate the antioxidative function as a result of irradiation. In addition, radon inhalation enhances the antioxidative function in some organs, and alleviates alcohol-induced oxidative damage of mouse liver. Moreover, in order to determine the most effective condition of radon inhalation, mice inhaled radon before or after carbon tetrachloride (CCl4) administration. Results showed that radon inhalation alleviates CCl4-induced hepatopathy, especially prior inhalation. It is highly possible that adequate activation of antioxidative functions induced by low-dose irradiation can contribute to preventing or reducing oxidative damages, which are related to lifestyle diseases

    Inhibitory Effects of Prior Low-dose X-irradiation on Ischemia-reperfusion Injury in Mouse Paw

    Get PDF
    We have reported that low-dose, unlike high-dose, irradiation enhanced antioxidation function and reduced oxidative damage. On the other hand, ischemia-reperfusion injury is induced by reactive oxygen species. In this study, we examined the inhibitory effects of prior low-dose X-irradiation on ischemia-reperfusion injury in mouse paw. BALB/c mice were irradiated by sham or 0.5 Gy of X-ray. At 4 hrs after irradiation, the left hind leg was bound 10 times with a rubber ring for 0.5, 1, or 2 hrs and the paw thickness was measured. Results show that the paw swelling thickness by ischemia for 0.5 hr was lower than that for 2 hrs. At 1 hr after reperfusion from ischemia for 1 hr, superoxide dismutase activity in serum was increased in those mice which received 0.5 Gy irradiation and in the case of the ischemia for 0.5 or 1 hr, the paw swelling thicknesses were inhibited by 0.5 Gy irradiation. In addition, interstitial edema in those mice which received 0.5 Gy irradiation was less than that in the mice which underwent by sham irradiation. These findings suggest that the ischemia-reperfusion injury is inhibited by the enhancement of antioxidation function by 0.5 Gy irradiation
    • …
    corecore