176 research outputs found

    Abnormalities of the FHIT gene in human oral carcinogenesis

    Get PDF
    The abnormalities of the fragile histidine triad (FHIT) gene in tissue samples of oral squamous cell carcinomas (SCCs) along with several leukoplakias and an erythroplakia were examined to determine whether the FHIT gene is actually a frequent target in vivo for alteration during oral carcinogenesis. Abnormal transcripts of the FHIT gene were found in eight of 15 oral SCCs. Although these abnormal transcripts varied widely, deletion patterns incorporating a deletion of exon 5 were the most common. Loss of heterozygosity (LOH) analysis demonstrated that the abnormal FHIT transcripts found in cancer cells were attributable to abnormalities of the FHIT gene. Abnormal FHIT transcripts were also observed in two of seven premalignant lesions. Interestingly, in the case of one patient with a premalignant lesion showing an abnormal FHIT transcript, subsequent oral SCC developed during a 3-year follow-up period. On the other hand, in the two patients from whom both leukoplakia and SCC samples were taken simultaneously, abnormal FHIT transcripts were found only in the SCCs. Although the functional role of FHIT remains to be clarified, these results suggest that the FHIT alteration is actually involved in carcinogenesis of the oral epithelium. © 2000 Cancer Research Campaig

    Composite Dirac Neutrinos

    Full text link
    We present a mechanism that naturally produces light Dirac neutrinos. The basic idea is that the right-handed neutrinos are composite. Any realistic composite model must involve `hidden flavor' chiral symmetries. In general some of these symmetries may survive confinement, and in particular, one of them manifests itself at low energy as an exact BLB-L symmetry. Dirac neutrinos are therefore produced. The neutrinos are naturally light due to compositeness. In general, sterile states are present in the model, some of them can naturally be warm dark matter candidates.Comment: 12 pages; Sec. IIC updated; minor corrections; published versio

    Low Energy 6-Dimensional N=2 Supersymmertric SU(6) Models on T2T^2 Orbifolds

    Get PDF
    We propose low energy 6-dimensional N=2 supersymmetric SU(6) models on M4×T2/(Z2)3M^4\times T^2/(Z_2)^3 and M4×T2/(Z2)4M^4\times T^2/(Z_2)^4, where the orbifold SU(3)C×SU(3)SU(3)_C\times SU(3) model can be embedded on the boundary 4-brane. For the zero modes, the 6-dimensional N=2 supersymmetry and the SU(6) gauge symmetry are broken down to the 4-dimensional N=1 supersymmetry and the SU(3)C×SU(2)L×U(1)Y×U(1)SU(3)_C\times SU(2)_L\times U(1)_Y\times U(1)' gauge symmetry by orbifold projections. In order to cancel the anomalies involving at least one U(1)U(1)', we add extra exotic particles. We also study the anomaly free conditions and present some anomaly free models. The gauge coupling unification can be achieved at 100200100\sim 200 TeV if the compactification scale for the fifth dimension is 343\sim 4 TeV. The proton decay problem can be avoided by putting the quarks and leptons/neutrinos on different 3-branes. And we discuss how to break the SU(3)C×SU(2)L×U(1)Y×U(1)SU(3)_C\times SU(2)_L\times U(1)_Y\times U(1)' gauge symmetry, solve the μ\mu problem, and generate the ZZZ-Z' mass hierarchy naturally by using the geometry. The masses of exotic particles can be at the order of 1 TeV after the gauge symmetry breaking. We also forbid the dimension-5 operators for the neutrino masses by U(1)U(1)' gauge symmetry, and the realistic left-handed neutrino masses can be obtained via non-renormalizable terms.Comment: Latex, 33 pages, discussion and references adde

    KeV Warm Dark Matter and Composite Neutrinos

    Full text link
    Elementary keV sterile Dirac neutrinos can be a natural ingredient of the composite neutrino scenario. For a certain class of composite neutrino theories, these sterile neutrinos naturally have the appropriate mixing angles to be resonantly produced warm dark matter (WDM). Alternatively, we show these sterile neutrinos can be WDM produced by an entropy-diluted thermal freeze-out, with the necessary entropy production arising not from an out-of-equilibrium decay, but rather from the confinement of the composite neutrino sector, provided there is sufficient supercooling.Comment: 12 pages, 2 figures, published versio

    Neutrino Mass and μe+γ\mu \rightarrow e + \gamma from a Mini-Seesaw

    Full text link
    The recently proposed "mini-seesaw mechanism" combines naturally suppressed Dirac and Majorana masses to achieve light Standard Model neutrinos via a low-scale seesaw. A key feature of this approach is the presence of multiple light (order GeV) sterile-neutrinos that mix with the Standard Model. In this work we study the bounds on these light sterile-neutrinos from processes like \mu ---> e + \gamma, invisible Z-decays, and neutrinoless double beta-decay. We show that viable parameter space exists and that, interestingly, key observables can lie just below current experimental sensitivities. In particular, a motivated region of parameter space predicts a value of BR(\mu ---> e + \gamma) within the range to be probed by MEG.Comment: 1+26 pages, 7 figures. v2 JHEP version (typo's fixed, minor change to presentation, results unchanged

    Biotechnological production of γ-decalactone, a peach like aroma, by Yarrowia lipolytica

    Get PDF
    The request for new flavourings increases every year. Consumer perception that everything natural is better is causing an increase demand for natural aroma additives. Biotechnology has become a way to get natural products. γ-Decalactone is a peach-like aroma widely used in dairy products, beverages and others food industries. In more recent years, more and more studies and industrial processes were endorsed to cost-effect this compound production. One of the best-known methods to produce -decalactone is from ricinoleic acid catalyzed by Yarrowia lipolytica, a generally regarded as safe status yeast. As yet, several factors affecting -decalactone production remain to be fully understood and optimized. In this review, we focus on the aromatic compound -decalactone and its production by Y. lipolytica. The metabolic pathway of lactone production and degradation are addressed. Critical analysis of novel strategies of bioprocess engineering, metabolic and genetic engineering and other strategies for the enhancement of the aroma productivity are presented.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684)

    LHC String Phenomenology

    Get PDF
    We argue that it is possible to address the deeper LHC Inverse Problem, to gain insight into the underlying theory from LHC signatures of new physics. We propose a technique which may allow us to distinguish among, and favor or disfavor, various classes of underlying theoretical constructions using (assumed) new physics signals at the LHC. We think that this can be done with limited data (510fb1)(5-10 fb^{-1}), and improved with more data. This is because of two reasons -- a) it is possible in many cases to reliably go from (semi)realistic microscopic string construction to the space of experimental observables, say, LHC signatures. b) The patterns of signatures at the LHC are sensitive to the structure of the underlying theoretical constructions. We illustrate our approach by analyzing two promising classes of string compactifications along with six other string-motivated constructions. Even though these constructions are not complete, they illustrate the point we want to emphasize. We think that using this technique effectively over time can eventually help us to meaningfully connect experimental data to microscopic theory.Comment: 50 Pages, 13 Figures, 3 Tables, v2: minor changes, references adde

    Simplified Models for LHC New Physics Searches

    Get PDF
    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the "Topologies for Early LHC Searches" workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ~50-500 pb-1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.Comment: 40 pages, 2 figures. This document is the official summary of results from "Topologies for Early LHC Searches" workshop (SLAC, September 2010). Supplementary material can be found at http://lhcnewphysics.or
    corecore