47 research outputs found
Void-induced cross slip of screw dislocations in fcc copper
Pinning interaction between a screw dislocation and a void in fcc copper is
investigated by means of molecular dynamics simulation. A screw dislocation
bows out to undergo depinning on the original glide plane at low temperatures,
where the behavior of the depinning stress is consistent with that obtained by
a continuum model. If the temperature is higher than 300 K, the motion of a
screw dislocation is no longer restricted to a single glide plane due to cross
slip on the void surface. Several depinning mechanisms that involve multiple
glide planes are found. In particular, a depinning mechanism that produces an
intrinsic prismatic loop is found. We show that these complex depinning
mechanisms significantly increase the depinning stress
Absorbing Boundary Conditions for Molecular Dynamics and Multiscale Modeling
We present an application of differential equation based local absorbing boundary conditions to molecular dynamics. The absorbing boundary conditions result in the absorbtion of the majority of waves incident perpendicular to the bounding surface. We demonstrate that boundary conditions developed for the wave equation can be applied to molecular dynamics. Comparisons with damping material boundary conditions are discussed. The concept is extended to the formulation of an atomistic-continuum multiscale scheme with handshaking between the regions based on absorbing boundary conditions. The multiscale model is effective in minimizing spurious reflections at the interface
Point defect dynamics in bcc metals
We present an analysis of the time evolution of self-interstitial atom and
vacancy (point defect) populations in pure bcc metals under constant
irradiation flux conditions. Mean-field rate equations are developed in
parallel to a kinetic Monte Carlo (kMC) model. When only considering the
elementary processes of defect production, defect migration, recombination and
absorption at sinks, the kMC model and rate equations are shown to be
equivalent and the time evolution of the point defect populations is analyzed
using simple scaling arguments. We show that the typically large mismatch of
the rates of interstitial and vacancy migration in bcc metals can lead to a
vacancy population that grows as the square root of time. The vacancy cluster
size distribution under both irreversible and reversible attachment can be
described by a simple exponential function. We also consider the effect of
highly mobile interstitial clusters and apply the model with parameters
appropriate for vanadium and iron.Comment: to appear in Phys. Rev.
The influence of transition metal solutes on dislocation core structure and values of Peierls stress and barrier in tungsten
Several transition metals were examined to evaluate their potential for
improving the ductility of tungsten. The dislocation core structure and Peierls
stress and barrier of screw dislocations in binary
tungsten-transition metal alloys (WTM) were investigated using
first principles electronic structure calculations. The periodic quadrupole
approach was applied to model the structure of dislocation. Alloying
with transition metals was modeled using the virtual crystal approximation and
the applicability of this approach was assessed by calculating the equilibrium
lattice parameter and elastic constants of the tungsten alloys. Reasonable
agreement was obtained with experimental data and with results obtained from
the conventional supercell approach. Increasing the concentration of a
transition metal from the VIIIA group, i.e. the elements in columns headed by
Fe, Co and Ni, leads to reduction of the elastic constant and
increase of elastic anisotropy A=. Alloying W with a group
VIIIA transition metal changes the structure of the dislocation core from
symmetric to asymmetric, similar to results obtained for WRe
alloys in the earlier work of Romaner {\it et al} (Phys. Rev. Lett. 104, 195503
(2010))\comments{\cite{WRECORE}}. In addition to a change in the core symmetry,
the values of the Peierls stress and barrier are reduced. The latter effect
could lead to increased ductility in a tungsten-based
alloy\comments{\cite{WRECORE}}. Our results demonstrate that alloying with any
of the transition metals from the VIIIA group should have similar effect as
alloying with Re.Comment: 12 pages, 8 figures, 3 table
Direct Observation of Martensitic Phase-Transformation Dynamics in Iron by 4D Single-Pulse Electron Microscopy
The in situ martensitic phase transformation of iron, a complex solid-state transition involving collective atomic displacement and interface movement, is studied in real time by means of four-dimensional (4D) electron microscopy. The iron nanofilm specimen is heated at a maximum rate of ∼10^(11) K/s by a single heating pulse, and the evolution of the phase transformation from body-centered cubic to face-centered cubic crystal structure is followed by means of single-pulse, selected-area diffraction and real-space imaging. Two distinct components are revealed in the evolution of the crystal structure. The first, on the nanosecond time scale, is a direct martensitic transformation, which proceeds in regions heated into the temperature range of stability of the fcc phase, 1185−1667 K. The second, on the microsecond time scale, represents an indirect process for the hottest central zone of laser heating, where the temperature is initially above 1667 K and cooling is the rate-determining step. The mechanism of the direct transformation involves two steps, that of (barrier-crossing) nucleation on the reported nanosecond time scale, followed by a rapid grain growth typically in ∼100 ps for 10 nm crystallites