31,913 research outputs found

    Microwave-mediated heat transport through a quantum dot

    Full text link
    The thermoelectric effect in a quantum dot (QD) attached to two leads in the presence of microwave fields is studied by using the Keldysh nonequilibrium Green function technique. When the microwave is applied only on the QD and in the linear-response regime, the main peaks in the thermoelectric figure of merit and the thermopower are found to decrease, with the emergence of a set of photon-induced peaks. Under this condition the microwave field can not generate heat current or electrical bias voltage. Surprisingly, when the microwave field is applied only to one (bright) lead and not to the other (dark) lead or the QD, heat flows mostly from the dark to the bright lead, almost irrespectively to the direction of the thermal gradient. We attribute this effect to microwave-induced opening of additional transport channels below the Fermi energy. The microwave field can change both the magnitude and the sign of the electrical bias voltage induced by the temperature gradient.Comment: 5 figur

    PassGAN: A Deep Learning Approach for Password Guessing

    Full text link
    State-of-the-art password guessing tools, such as HashCat and John the Ripper, enable users to check billions of passwords per second against password hashes. In addition to performing straightforward dictionary attacks, these tools can expand password dictionaries using password generation rules, such as concatenation of words (e.g., "password123456") and leet speak (e.g., "password" becomes "p4s5w0rd"). Although these rules work well in practice, expanding them to model further passwords is a laborious task that requires specialized expertise. To address this issue, in this paper we introduce PassGAN, a novel approach that replaces human-generated password rules with theory-grounded machine learning algorithms. Instead of relying on manual password analysis, PassGAN uses a Generative Adversarial Network (GAN) to autonomously learn the distribution of real passwords from actual password leaks, and to generate high-quality password guesses. Our experiments show that this approach is very promising. When we evaluated PassGAN on two large password datasets, we were able to surpass rule-based and state-of-the-art machine learning password guessing tools. However, in contrast with the other tools, PassGAN achieved this result without any a-priori knowledge on passwords or common password structures. Additionally, when we combined the output of PassGAN with the output of HashCat, we were able to match 51%-73% more passwords than with HashCat alone. This is remarkable, because it shows that PassGAN can autonomously extract a considerable number of password properties that current state-of-the art rules do not encode.Comment: This is an extended version of the paper which appeared in NeurIPS 2018 Workshop on Security in Machine Learning (SecML'18), see https://github.com/secml2018/secml2018.github.io/raw/master/PASSGAN_SECML2018.pd

    Fractional Exclusion Statistics for the Multicomponent Sutherland Model

    Full text link
    We show by microscopic calculation that thermodynamics of the multicomponent Sutherland model is equivalent to that of a free particle system with fractional exclusion statistics at all temperatures. The parameters for exclusion statistics are given by the strength of the repulsive interaction, and have both intra- and inter-species components. We also show that low temperature properties of the system are described in terms of free fractional particles without the statistical parameters for different species. The effective exclusion statistics for intra-species at low temperatures depend on polarization of the system.Comment: 13 pages, using RevTex, 5 figures on reques

    Re/Os constraint on the time-variability of the fine-structure constant

    Full text link
    We argue that the accuracy by which the isochron parameters of the decay 187Re187Os^{187}{\rm Re}\to ^{187}{\rm Os} are determined by dating iron meteorites may not directly constrain the possible time-dependence of the decay rate and hence of the fine-structure constant α\alpha. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the QSO absorption lines are re-examined.Comment: 7 pages, 3 figures; v2, revised top sentence on p.

    Isometric Representations of Totally Ordered Semigroups

    Get PDF
    Let S be a subsemigroup of an abelian torsion-free group G. If S is a positive cone of G, then all C*-algebras generated by faithful isometrical non-unitary representations of S are canonically isomorphic. Proved by Murphy, this statement generalized the well-known theorems of Coburn and Douglas. In this note we prove the reverse. If all C*-algebras generated by faithful isometrical non-unitary representations of S are canonically isomorphic, then S is a positive cone of G. Also we consider G = Z\times Z and prove that if S induces total order on G, then there exist at least two unitarily not equivalent irreducible isometrical representation of S. And if the order is lexicographical-product order, then all such representations are unitarily equivalent.Comment: February 21, 2012. Kazan, Russi

    Detection of broad 21-cm absorption at z = 0.656 in the complex sight-line towards 3C336

    Full text link
    We report the detection of 21-cm absorption at z = 0.656 towards 1622+238 (3C336). The line is very broad with a Full-Width Half Maximum (FWHM) of 235 km/s, giving a velocity integrated optical depth of 2.2 km/s. The centroid of the line is offset from that of the known damped Lyman-alpha absorption (DLA) system by 50 km/s, and if the Lyman-alpha and 21-cm absorption are due to the same gas, we derive a spin temperature of < 60 K, which would be the lowest yet in a DLA. The wide profile, which is over four times wider than that of any other DLA, supports the hypothesis that the hydrogen absorption is occurring either in the disk of a large underluminous spiral or a group of dim unidentified galaxies, associated with the single object which has been optically identified at this redshift.Comment: 5 pages, 3 figures, accepted by MNRAS Letter

    A new concept for high-cycle-life LEO: Rechargeable MnO2-hydrogen

    Get PDF
    The nickel-hydrogen secondary battery system is now the one of choice for use in GEO satellites. It offers superior energy density to that of nickel-cadmium, with a lifetime that is at least comparable in terms of both cycle life and overall operating life. While the number of deep cycles required for GEO use is small, LEO satellites with long lifetimes (5 to 10 years) will require secondary battery systems allowing 30,000 to 60,000 useful cycles which are characterized by an approximately 2C charge rate and C average discharge rate. Recent work has shown that birnessite MnO2 doped with bismuth oxide can be cycled at very high rates (6C) over a very large number of cycles (thousands) at depths-of-discharge in the 85 to 90 percent range, based on two electrons, which discharge at the same potential in a flat plateau. The potential is about 0.7 V vs. hydrogen, with a cut-off at 0.6 V. At first sight, this low voltage would seem to be a disadvantage, since the theoretical energy density will be low. However, it permits the use of lightweight materials that are immune from corrosion at the positive. The high utilization and low equivalent weight of the active material, together with the use of teflon-bonded graphite for current collection, result in very light positives, especially when these are compared with those in a derated nickel-hydrogen system. In addition, the weight of the pressure vessel falls somewhat, since the dead volume is lower. Calculations show that a total system will have 2.5 times the Ah capacity of a derated nickel-hydrogen LEO battery, so that the energy density, based on 1.2 V for nickel-hydrogen and 0.7 V for MnO2-hydrogen, will be 45 percent higher for comparable cycling performance

    A new concept for high-cycle-life LEO: Rechargeable MnO2-hydrogen

    Get PDF
    The nickel-hydrogen secondary battery system, developed in the early 1970s, has become the system of choice for geostationary earth orbit (GEO) applications. However, for low earth orbit (LEO) satellites with long expected lifetimes the nickel positive limits performance. This requires derating of the cell to achieve very long cycle life. A new system, rechargeable MnO2-Hydrogen, which does not require derating, is described here. For LEO applications, it promises to have longer cycle life, high rate capability, a higher effective energy density, and much lower self-discharge behavior than those of the nickel-hydrogen system
    corecore