23,106 research outputs found

    QCD resummation in hard diffractive dijet production at the electron-ion collider

    Get PDF
    Diffractive dijet production at the electron-ion collider (EIC) has been proposed to study the gluon Wigner distribution at small-x. We investigate the soft gluon radiation associated with the final state jets and an all order resummation formula is derived. We show that the soft gluon resummation plays an important role to describe E791 data on π-induced diffractive dijet production at Fermilab. Predictions for the EIC are presented, and we emphasize that the soft gluon resummation is an important aspect to explore the nucleon/nucleus tomography through these processes

    Magnetic field effects on the finite-frequency noise and ac conductance of a Kondo quantum dot out of equilibrium

    Full text link
    We present analytic results for the finite-frequency current noise and the nonequilibrium ac conductance for a Kondo quantum dot in presence of a magnetic field. Using the real-time renormalization group method, we determine the line shape close to resonances and show that while all resonances in the ac conductance are broadened by the transverse spin relaxation rate, the noise at finite field additionally involves the longitudinal rate as well as sharp kinks resulting in singular derivatives. Our results provide a consistent theoretical description of recent experimental data for the emission noise at zero magnetic field, and we propose the extension to finite field for which we present a detailed prediction.Comment: 21 pages, 13 figure

    Spin and orbital fluctuations in non-equilibrium transport through quantum dots: A renormalisation-group analysis

    Full text link
    We study non-equilibrium current and occupation probabilities of a two-orbital quantum dot. The couplings to the leads are allowed to be asymmetric and orbital dependent as it is generically the case in transport experiments on molecules and nanowires. Starting from a two-orbital Anderson model, we perform a generalised Schrieffer-Wolff transformation to derive an effective Kondo model. This generates an orbital potential scattering contribution which is of the same order as the spin exchange interaction. In a first perturbative analysis we identify a regime of negative differential conductance and a cascade resonance in the presence of an external magnetic field, which both originate from the non-equilibrium occupation of the orbitals. We then study the logarithmic enhancement of these signatures by means of a renormalisation-group treatment. We find that the orbital potential scattering qualitatively changes the renormalisation of the spin exchange couplings and strongly affects the differential conductance for asymmetric couplings.Comment: 6 pages, 4 figures, revised version as publishe

    SGN Database: From QTLs to Genomes

    Get PDF
    Quantitative trait loci (QTL) analysis is used to dissect the genetic basis underlying polygenic traits. Several public databases have been storing and making QTL data available to research communities. To our knowledge, current QTL databases rely on manual curation where curators read literature and extract relevant QTL information to store in databases. Evidently, this approach is expensive in terms of expert manpower and time use and limits the type of data that can be curated. At the Solanaceae Genomics Network (SGN) ("http://sgn.cornell.edu":http://sgn.cornell.edu), we have developed a database to store raw phenotype and genotype data from QTL studies, perform, on the fly, QTL analysis using R/QTL statistical software ("http://www.rqtl.org":http://www.rqtl.org) and visualize QTLs on a genetic map. Users can identify peak, and flanking markers for QTLs of traits of interest. The QTL database is integrated with other SGN databases (eg. Marker, BACs, and Unigenes), and analysis tools such as the Comparative Map Viewer. Using the comparative map viewer, users can compare chromosome with QTL regions to genetic maps of interest from the same or different Solanaceae species. As the tomato genome sequencing advances, users can also identify corresponding BAC sequences or locations on the tomato physical map, which can be suggestive of candidate genes for a trait of interest.

Furthermore at SGN, images, quantitative phenotype and genotype data, publications, genetic maps generated by QTL studies are displayed and available for download. Currently, data from three F2 and two backcross population QTL studies on fruit morphology traits (18 – 46 traits per population) is available at the SGN website for viewing at population, accession, and trait levels. Traits are described using ontology terms. Phenotype data is presented in tabular and graphical formats such as frequency distributions with basic descriptive statistics. Mapping data showing location of parental alleles on individual accession genetic maps is also available.

SGN is a public database hosted at Boyce Thomson Institute, Cornell University, and funded by USDA CSREES and NSF

    Correlation of small-x gluons in impact parameter space

    Get PDF
    In the framework of the QCD dipole model at high energy, we present an analytic evaluation of the dipole pair density in two limits in which the parent dipole is much larger/smaller than the distance between the two child dipoles. Due to conformal symmetry, the two limits give an identical result. The power-law correlation between dipoles explicitly breaks the factorization of target-averaged scattering amplitudes.Comment: 15 pages, 3 figures; some comments and references added, accepted by Nucl. Phys.

    Jet evolution from weak to strong coupling

    Full text link
    Recent studies, using the AdS/CFT correspondence, of the radiation produced by a decaying system or by an accelerated charge in the N=4 supersymmetric Yang-Mills theory, led to a striking result: the 'supergravity backreaction', which is supposed to describe the energy density at infinitely strong coupling, yields exactly the same result as at zero coupling, that is, it shows no trace of quantum broadening. We argue that this is not a real property of the radiation at strong coupling, but an artifact of the backreaction calculation, which is unable to faithfully capture the space-time distribution of the radiation. This becomes obvious in the case of a decaying system ('virtual photon'), for which the backreaction is tantamount to computing a three-point function in the conformal gauge theory, which is independent of the coupling since protected by symmetries. Whereas this non-renormalization property is specific to the conformal N=4 SYM theory, we argue that the failure of the three-point function to provide a local measurement is in fact generic: it holds in any field theory with non-trivial interactions. To properly study a localized distribution, one should rather compute a four-point function, as standard in deep inelastic scattering. We substantiate these considerations with studies of the radiation produced by the decay of a time-like photon at both weak and strong coupling. We show that by computing four-point functions, in perturbation theory at weak coupling and, respectively, from Witten diagrams at strong coupling, one can follow the quantum evolution and thus demonstrate the broadening of the energy distribution. This broadening is slow when the coupling is weak but it proceeds as fast as possible in the limit of a strong coupling.Comment: 49 pages, 6 figure

    Conductivity of disordered quantum lattice models at infinite temperature: Many-body localization

    Full text link
    We reinvestigate the behavior of the conductivity of several disordered quantum lattice models at infinite temperature using exact diagonalization. Contrary to the conclusion drawn in a recent investigation of similar quantities in identical systems, we find evidence of a localized regime for strong random fields. We estimate the location of the critical field for the many-body localization transition for the random-field XXZ spin chain, and compare our findings with recent investigations in related systems.Comment: 5 pages, 4 figures. Accepted for publication in Phys. Rev.

    Gluon Distribution Functions for Very Large Nuclei at Small Transverse Momentum

    Full text link
    We show that the gluon distribution function for very large nuclei may be computed for small transverse momentum as correlation functions of an ultraviolet finite two dimensional Euclidean field theory. This computation is valid to all orders in the density of partons per unit area, but to lowest order in αs\alpha_s. The gluon distribution function is proportional to 1/x1/x, and the effect of the finite density of partons is to modify the dependence on transverse momentum for small transverse momentum.Comment: TPI--MINN--93--52/T, NUC--MINN--93--28/T, UMN--TH--1224/93, LaTex, 11 page

    Derivation of phenomenological expressions for transition matrix elements for electron-phonon scattering

    Full text link
    In the literature on electron-phonon scatterings very often a phenomenological expression for the transition matrix element is used which was derived in the textbooks of Ashcroft/Mermin and of Czycholl. There are various steps in the derivation of this expression. In the textbooks in part different arguments have been used in these steps, but the final result is the same. In the present paper again slightly different arguments are used which motivate the procedure in a more intuitive way. Furthermore, we generalize the phenomenological expression to describe the dependence of the matrix elements on the spin state of the initial and final electron state

    Static and dynamic structure factors in the Haldane phase of the bilinear-biquadratic spin-1

    Get PDF
    The excitation spectra of the T=0 dynamic structure factors for the spin, dimer, and trimer fluctuation operators as well as for the newly defined center fluctuation operator in the one-dimensional S=1 Heisenberg model wi th isotropic bilinear (Jcosθ)(J\cos\theta) and biquadratic (Jsinθ)(J\sin\theta) exchange are investigated via the recursion method for systems with up to N=18 site s over the predicted range, π/4<θπ/4-\pi/4<\theta\lesssim\pi/4, of the topologically ordered Haldane phase. The four static and dynamic structure factors probe t he ordering tendencies in the various coupling regimes and the elementary and composite excitations which dominate the T=0 dynamics. At θ=arctan1/3\theta = \arctan{1/3} (VBS point), the dynamically relevant spectra in the invariant subspaces with total spin ST=0,1,2S_T = 0,1,2 are dominated by a branch of magnon states (ST=1)(S_T = 1), by continua of two-magnon scattering states (ST=0,1,2)(S_T = 0,1,2), and by discrete branches of two-magnon bound states with positive interaction energy (ST=0,2)(S_T = 0,2). The dimer and trimer spectra at q=πq=\pi ar e found to consist of single modes with NN-independent excitation energies ωλD/e0=5\omega_\lambda^D/|e_0|=5 and ωλT/e0=6\omega_\lambda^T/|e_0|=6, where e0=E0/Ne_0=E_0/N is the ground-state energy per site. The basic structure of the dynamically relevant excitation spectrum remains the same over a substantial parameter range within the Haldane phase. At the transition to the dimerized phase (θ=π/4\theta=-\pi/4), the two-magnon excitations turn into two-spinon excitations.Comment: 12 pages, 4 Postscript figure
    corecore