502 research outputs found
Spin Dynamical Properties of the Layered Perovskite La1.2Sr1.8Mn2O7
Inelastic neutron-scattering measurements were performed on a single crystal
of the layered colossal magnetoresistance (CMR) material La1.2Sr1.8Mn2O7 (Tc ~
120K). We found that the spin wave dispersion is almost perfectly
two-dimensional with the in-plane spin stiffness constant D ~ 151meVA. The
value is similar to that of similarly doped La1-xSrxMnO3 though its Tc is three
times higher, indicating a large renormalization due to low dimensionality.
There exist two branches due to a coupling between layers within a
double-layer. The out-of-plane coupling is about 30% of the in-plane coupling
though the Mn-O bond lengths are similar.Comment: 3 pages, 3 figures J. Phys. Chem. Solids in pres
Interplay of the CE-type charge ordering and the A-type spin ordering in a half-doped bilayer manganite La{1}Sr{2}Mn{2}O{7}
We demonstrate that the half-doped bilayer manganite La_{1}Sr_{2}Mn_{2}O_{7}
exhibits CE-type charge-ordered and spin-ordered states below K and below K, respectively. However, the volume
fraction of the CE-type ordering is relatively small, and the system is
dominated by the A-type spin ordering. The coexistence of the two types of
ordering is essential to understand its transport properties, and we argue that
it can be viewed as an effective phase separation between the metallic
orbital ordering and the charge-localized
orbital ordering.Comment: 5 pages, 4 figures, submitted to Phys. Rev.
Temperature and Field Dependence of Magnetic Domains in LaSrMnO
Colossal magnetoresistance and field-induced ferromagnetism are well
documented in manganite compounds. Since domain wall resistance contributes to
magnetoresistance, data on the temperature and magnetic field dependence of the
ferromagnetic domain structure are required for a full understanding of the
magnetoresistive effect. Here we show, using cryogenic Magnetic Force
Microscopy, domain structures for the layered manganite
LaSrMnO as a function of temperature and magnetic
field. Domain walls are suppressed close to the Curie temperature T, and
appear either via the application of a c-axis magnetic field, or by decreasing
the temperature further. At temperatures well below T, new domain walls,
stable at zero field, can be formed by the application of a c-axis field.
Magnetic structures are seen also at temperatures above T: these features
are attributed to inclusions of additional Ruddleston-Popper manganite phases.
Low-temperature domain walls are nucleated by these ferromagnetic inclusions.Comment: 6 figure
Transport and magnetic properties of GdBaCo_{2}O_{5+x} single crystals: A cobalt oxide with square-lattice CoO_2 planes over a wide range of electron and hole doping
Single crystals of the layered perovskite GdBaCo_{2}O_{5+x} (GBCO) have been
grown by the floating-zone method, and their transport, magnetic, and
structural properties have been studied in detail over a wide range of oxygen
contents. The obtained data are used to establish a rich phase diagram centered
at the "parent'' compound GdBaCo_{2}O_{5.5} -- an insulator with Co ions in the
3+ state. An attractive feature of GBCO is that it allows a precise and
continuous doping of CoO_{2} planes with either electrons or holes, spanning a
wide range from the charge-ordered insulator at 50% electron doping (x=0) to
the undoped band insulator (x=0.5), and further towards the heavily hole-doped
metallic state. This continuous doping is clearly manifested in the behavior of
thermoelectric power which exhibits a spectacular divergence with approaching
x=0.5, where it reaches large absolute values and abruptly changes its sign. At
low temperatures, the homogeneous distribution of doped carriers in GBCO
becomes unstable, and both the magnetic and transport properties point to an
intriguing nanoscopic phase separation. We also find that throughout the
composition range the magnetic behavior in GBCO is governed by a delicate
balance between ferromagnetic (FM) and antiferromagnetic (AF) interactions,
which can be easily affected by temperature, doping, or magnetic field,
bringing about FM-AF transitions and a giant magnetoresistance (MR) phenomenon.
An exceptionally strong uniaxial anisotropy of the Co spins, which dramatically
simplifies the possible spin arrangements, together with the possibility of
continuous ambipolar doping turn GBCO into a model system for studying the
competing magnetic interactions, nanoscopic phase separation and accompanying
magnetoresistance phenomena.Comment: 31 pages, 32 figures, submitted to Phys. Rev.
Novel stripe-type charge ordering in the metallic A-type antiferromagnet Pr{0.5}Sr{0.5}MnO{3}
We demonstrate that an A-type antiferromagnetic (AFM) state of
Pr{0.5}Sr{0.5}MnO{3} exhibits a novel charge ordering which governs the
transport property. This charge ordering is stripe-like, being characterized by
a wave vector q ~ (0,0,0.3) with very anisotropic correlation parallel and
perpendicular to the stripe direction. This charge ordering is specific to the
manganites with relatively wide one-electron band width (W) which often exhibit
a metallic A-type AFM state, and should be strictly distinguished from the
CE-type checkerboard-like charge ordering which is commonly observed in
manganites with narrower W such as La{1-x}Ca{x}MnO{3} and Pr{1-x}Ca{x}MnO{3}.Comment: REVTeX4, 5 pages, 4 figure
Spin and orbital ordering in double-layered manganites
We study theoretically the phase diagram of the double-layered perovskite
manganites taking into account the orbital degeneracy, the strong Coulombic
repulsion, and the coupling with the lattice deformation. Observed spin
structural changes as the increased doping are explained in terms of the
orbital ordering and the bond-length dependence of the hopping integral along
-axis. Temperature dependence of the neutron diffraction peak corresponding
to the canting structure is also explained. Comparison with the 3D cubic system
is made.Comment: 7 figure
- …