339 research outputs found

    Industrial Applications of Laser Neutron Source

    Full text link
    The industrial applications of the intense neutron source have been widely explored because of the unique features of the neutron-matter interaction. Usually, intense neutron sources are assembled with fission reactors or high energy ion accelerators. The big size and high cost of these systems are the bottle neck to promote the industrial applications of intense neutrons. In this paper, we propose the compact laser driven neutron source for the industrial application. As the first step of our project for the versatile applications of laser driven neutron source, Li-neutron and/or Li-proton interactions have been investigated for the application to the development of Li battery

    Dynamic resource allocation with integrated reinforcement learning for a D2D-enabled LTE-A network with access to unlicensed bandt

    Full text link
    We propose a dynamic resource allocation algorithm for device-To-device (D2D) communication underlying a Long Term Evolution Advanced (LTE-A) network with reinforcement learning (RL) applied for unlicensed channel allocation. In a considered system, the inband and outband resources are assigned by the LTE evolved NodeB (eNB) to different device pairs to maximize the network utility subject to the target signal-To-interference-And-noise ratio (SINR) constraints. Because of the absence of an established control link between the unlicensed and cellular radio interfaces, the eNB cannot acquire any information about the quality and availability of unlicensed channels. As a result, a considered problem becomes a stochastic optimization problem that can be dealt with by deploying a learning theory (to estimate the random unlicensed channel environment). Consequently, we formulate the outband D2D access as a dynamic single-player game in which the player (eNB) estimates its possible strategy and expected utility for all of its actions based only on its own local observations using a joint utility and strategy estimation based reinforcement learning (JUSTE-RL) with regret algorithm. A proposed approach for resource allocation demonstrates near-optimal performance after a small number of RL iterations and surpasses the other comparable methods in terms of energy efficiency and throughput maximization

    Joint bandwidth and power allocation for LTE-based cognitive radio network based on buffer occupancy

    Full text link
    We investigate the problem of resource allocation in a cognitive long-term evolution (LTE) network, where the available bandwidth resources are shared among the primary (licensed) users (PUs) and secondary (unlicensed) users (SUs). Under such spectrum sharing conditions, the transmission of the SUs should have minimal impact on quality of service (QoS) and operating conditions of the PUs. To achieve this goal, we propose to assign the network resources based on the buffer sizes of the PUs and SUs in the uplink (UL) and downlink (DL) directions. To ensure that the QoS requirements of the PUs are satisfied, we enforce some upper bound on the size of their buffers considering two network usage scenarios. In the first scenario, PUs pay full price for accessing the spectrum and get full QoS protection; the SUs access the network for free and are served on a best-effort basis. In the second scenario, PUs pay less in exchange for sharing the bandwidth and get the reduced QoS guarantees; SUs pay some price for their access without any QoS guarantees. Performance of the algorithms proposed in the paper is evaluated using simulations in OPNET environment. The algorithms show superior performance when compared with other relevant techniques

    Hierarchical-p reference picture selection based error resilient video coding framework for high efficiency video coding transmission applications

    Full text link
    In this paper, a new reference picture selection (RPS) is proposed for a high efficiency video coding (HEVC) framework. In recent studies, HEVC has been shown to be sensitive to packet error which is unavoidable in transmission applications especially for wireless networks. RPS is an effective error resilient technique for video transmission systems where a feedback channel with short round trip delay time is available. However, its procedure cannot directly apply to the HEVC framework and thus this paper expands it. In RPS, error propagation can still happen during round trip delay time. To alleviate the effect of error propagation for better quality, the proposed algorithm considers both the RPS technique and the region-based intra mode selection method by using some novel features of HEVC. Experimental results demonstrate that the proposed method outperforms the hierarchical-P RPS algorithm in terms of PSNR and other metrics. The average PSNR improvement of the proposed algorithm over the reference algorithm under 10% packet error rate is 1.56 dB for 1080p sequences, 2.32 dB for 720p sequences and 1.01 dB for wide video graphics array (WVGA) sequences, respectively. The performance of proposed method is also tested for applications where feedback information is not available. The proposed method shows noticeable improvement for video sequences that contain low or moderate level of motions

    A Front-End Technique for Automatic Noisy Speech Recognition

    Full text link
    The sounds in a real environment not often take place in isolation because sounds are building complex and usually happen concurrently. Auditory masking relates to the perceptual interaction between sound components. This paper proposes modeling the effect of simultaneous masking into the Mel frequency cepstral coefficient (MFCC) and effectively improve the performance of the resulting system. Moreover, the Gammatone frequency integration is presented to warp the energy spectrum which can provide gradually decaying the weights and compensate for the loss of spectral correlation. Experiments are carried out on the Aurora-2 database, and frame-level cross entropy-based deep neural network (DNN-HMM) training is used to build an acoustic model. While given models trained on multi-condition speech data, the accuracy of our proposed feature extraction method achieves up to 98.14% in case of 10dB, 94.40% in 5dB, 81.67% in 0dB and 51.5% in -5dB, respectively

    Metamaterial-Inspired Quad-Band Notch Filter for LTE Band Receivers and WPT Applications

    Full text link
    A new compact quad-band notch filter (QBNF) based on the extended composite right and left-handed transmission line (E-CRLH TL) has been presented. As known, E-CRLH TL behaves like a quad-band structure. A microstrip TL which is loaded with an open-ended ECRLH TL is presented as a QBNF. Four unwanted frequencies were used in a dual-band LTE receiver as four notch frequencies which must be eliminated (0.9 GHz, 1.3 GHz, 2.55 GHz, and 3.35 GHz). Also, this QBNF can be applied to simultaneous wireless power and data transfer (SWPDT) system to isolate the wireless power circuit from the data communication circuit. A design technique for the proposed QBNF is presented and its performance is validated using full-wave simulation results and theoretical analysis. The main advantage of this design is an overall rejection greater than 20dB at selected unwanted frequencies. Good agreements between the fullwave simulation and equivalent circuit model results have been achieved which verified the effectiveness of the proposed circuit model. The proposed QBNF is designed on an FR-4 substrate and the dimension of the proposed QBNF is 20 * 22 mm

    Fast ignitor research at the Institute of Laser Engineering, Osaka University

    Full text link
    Copyright 2001 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 8(5), 2268-2274, 2001 and may be found at http://dx.doi.org/10.1063/1.135259

    10-kJ PW Laser for the FIREX-I Program

    Full text link
    A 10-kJ PW laser (LFEX) is under construction for the FIREX-I program. This paper reports a design overview of LFEX, the technological development of a large-aperture arrayed amplifier with modified four-pass architecture, wavefront correction, a large-aperture Faraday rotator with a superconducting magnet, a new pulse compressor arrangement, and focus control
    corecore