15 research outputs found

    Minkowski-type and Alexandrov-type theorems for polyhedral herissons

    Full text link
    Classical H.Minkowski theorems on existence and uniqueness of convex polyhedra with prescribed directions and areas of faces as well as the well-known generalization of H.Minkowski uniqueness theorem due to A.D.Alexandrov are extended to a class of nonconvex polyhedra which are called polyhedral herissons and may be described as polyhedra with injective spherical image.Comment: 19 pages, 8 figures, LaTeX 2.0

    Zindler-type hypersurfaces in R^4

    Get PDF
    In this paper the definition of Zindler-type hypersurfaces is introduced in R4\mathbb{R}^4 as a generalization of planar Zindler curves. After recalling some properties of planar Zindler curves, it is shown that Zindler hypersurfaces satisfy similar properties. Techniques from quaternions and symplectic geometry are used. Moreover, each Zindler hypersurface is fibrated by space Zindler curves that correspond, in the convex case, to some space curves of constant width lying on the associated hypersurface of constant width and with the same symplectic area

    Fuchsian convex bodies: basics of Brunn--Minkowski theory

    Full text link
    The hyperbolic space \H^d can be defined as a pseudo-sphere in the (d+1)(d+1) Minkowski space-time. In this paper, a Fuchsian group Γ\Gamma is a group of linear isometries of the Minkowski space such that \H^d/\Gamma is a compact manifold. We introduce Fuchsian convex bodies, which are closed convex sets in Minkowski space, globally invariant for the action of a Fuchsian group. A volume can be associated to each Fuchsian convex body, and, if the group is fixed, Minkowski addition behaves well. Then Fuchsian convex bodies can be studied in the same manner as convex bodies of Euclidean space in the classical Brunn--Minkowski theory. For example, support functions can be defined, as functions on a compact hyperbolic manifold instead of the sphere. The main result is the convexity of the associated volume (it is log concave in the classical setting). This implies analogs of Alexandrov--Fenchel and Brunn--Minkowski inequalities. Here the inequalities are reversed

    Singularities of virtual polytopes

    No full text
    corecore