27 research outputs found
On the analogy between streamlined magnetic and solid obstacles
Analogies are elaborated in the qualitative description of two systems: the
magnetohydrodynamic (MHD) flow moving through a region where an external local
magnetic field (magnetic obstacle) is applied, and the ordinary hydrodynamic
flow around a solid obstacle. The former problem is of interest both
practically and theoretically, and the latter one is a classical problem being
well understood in ordinary hydrodynamics. The first analogy is the formation
in the MHD flow of an impenetrable region -- core of the magnetic obstacle --
as the interaction parameter , i.e. strength of the applied magnetic field,
increases significantly. The core of the magnetic obstacle is streamlined both
by the upstream flow and by the induced cross stream electric currents, like a
foreign insulated insertion placed inside the ordinary hydrodynamic flow. In
the core, closed streamlines of the mass flow resemble contour lines of
electric potential, while closed streamlines of the electric current resemble
contour lines of pressure. The second analogy is the breaking away of attached
vortices from the recirculation pattern produced by the magnetic obstacle when
the Reynolds number , i.e. velocity of the upstream flow, is larger than a
critical value. This breaking away of vortices from the magnetic obstacle is
similar to that occurring past a real solid obstacle. Depending on the inlet
and/or initial conditions, the observed vortex shedding can be either symmetric
or asymmetric.Comment: minor changes, accepted for PoF, 26 pages, 7 figure
Structure of the Wake of a Magnetic Obstacle
We use a combination of numerical simulations and experiments to elucidate
the structure of the flow of an electrically conducting fluid past a localized
magnetic field, called magnetic obstacle. We demonstrate that the stationary
flow pattern is considerably more complex than in the wake behind an ordinary
body. The steady flow is shown to undergo two bifurcations (rather than one)
and to involve up to six (rather than just two) vortices. We find that the
first bifurcation leads to the formation of a pair of vortices within the
region of magnetic field that we call inner magnetic vortices, whereas a second
bifurcation gives rise to a pair of attached vortices that are linked to the
inner vortices by connecting vortices.Comment: 4 pages, 5 figures, corrected two typos, accepted for PR
Recommended from our members
Hydraulic hammer drilling technology: Developments and capabilities
Percussion drilling technology was considered many years ago as one of the best approaches for hard rock drilling. Unfortunately the efficiency of most hydraulic hammer (HH) designs was very low (8% maximum), so they were successfully used in shallow boreholes only. Thirty years of research and field drilling experience with HH application in Former Soviet Union (FSU) countries led to the development of a new generation of HH designs with a proven efficiency of 40%. That advance achieved good operational results in hard rock at depths up to 2,000 m and more. The most recent research has shown that there are opportunities to increase HH efficiency up to 70%. This paper presents HH basic design principles and operational features. The advantages of HH technology for coiled-tubing drilling is shown on the basis of test results recently conducted in the US
Signatures of the slow solar wind streams from active regions in the inner corona
Some of local sources of the slow solar wind can be associated with
spectroscopically detected plasma outflows at edges of active regions
accompanied with specific signatures in the inner corona. The EUV telescopes
(e.g. SPIRIT/CORONAS-F, TESIS/CORONAS-Photon and SWAP/PROBA2) sometimes
observed extended ray-like structures seen at the limb above active regions in
1MK iron emission lines and described as "coronal rays". To verify the
relationship between coronal rays and plasma outflows, we analyze an isolated
active region (AR) adjacent to small coronal hole (CH) observed by different
EUV instruments in the end of July - beginning of August 2009. On August 1 EIS
revealed in the AR two compact outflows with the Doppler velocities V =10-30
km/s accompanied with fan loops diverging from their regions. At the limb the
ARCH interface region produced coronal rays observed by EUVI/STEREO-A on July
31 as well as by TESIS on August 7. The rays were co-aligned with open magnetic
field lines expanded to the streamer stalks. Using the DEM analysis, it was
found that the fan loops diverged from the outflow regions had the dominant
temperature of ~1 MK, which is similar to that of the outgoing plasma streams.
Parameters of the solar wind measured by STEREO-B, ACE, WIND, STEREO-A were
conformed with identification of the ARCH as a source region at the
Wang-Sheeley-Arge map of derived coronal holes for CR 2086. The results of the
study support the suggestion that coronal rays can represent signatures of
outflows from ARs propagating in the inner corona along open field lines into
the heliosphere.Comment: Accepted for publication in Solar Physics; 31 Pages; 13 Figure
Natural convection in a square cavity with uniformly heated and/or insulated walls using marker-and-cell method
In this study, a numerical investigation has been performed using the computational Harlow-Welch MAC (Marker and Cell) finite difference method to analyse the unsteady state two-dimensional natural convection in lid-driven square cavity with left wall maintained at constant heat flux and remaining walls kept thermally insulated. The significant parameters in the present study are Reynolds number (Re), thermal Grashof number (Gr) and Prandtl number (Pr) and Peclét number (Pe =PrRe). The structure of thermal convection patterns is analysed via streamline, vorticity, pressure and temperature contour plots. The influence of the thermophysical parameters on these distributions is described in detail. Validation of solutions with earlier studies is included. Mesh independence is also conducted. It is observed that an increase in Prandtl number intensifies the primary circulation whereas it reduces the heat transfer rate. Increasing thermal Grashof number also decreases heat transfer rates. Furthermore the isotherms are significantly compressed towards the left (constant flux) wall with a variation in Grashof number while Peclét number is fixed. The study is relevant to solar collector heat transfer simulations and also crystal growth technologies