8,066 research outputs found

    Cross-talk compensation of hyperfine control in donor qubit architectures

    Full text link
    We theoretically investigate cross-talk in hyperfine gate control of donor-qubit quantum computer architectures, in particular the Kane proposal. By numerically solving the Poisson and Schr\"{o}dinger equations for the gated donor system, we calculate the change in hyperfine coupling and thus the error in spin-rotation for the donor nuclear-electron spin system, as the gate-donor distance is varied. We thus determine the effect of cross-talk - the inadvertent effect on non-target neighbouring qubits - which occurs due to closeness of the control gates (20-30nm). The use of compensation protocols is investigated, whereby the extent of crosstalk is limited by the application of compensation bias to a series of gates. In light of these factors the architectural implications are then considered.Comment: 15 pages, 22 figures, submitted to Nanotechnolog

    Reducing Residual-Mass Effects for Domain-Wall Fermions

    Full text link
    It has been suggested to project out a number of low-lying eigenvalues of the four-dimensional Wilson--Dirac operator that generates the transfer matrix of domain-wall fermions in order to improve simulations with domain-wall fermions. We investigate how this projection method reduces the residual chiral symmetry-breaking effects for a finite extent of the extra dimension. We use the standard Wilson as well as the renormalization--group--improved gauge action. In both cases we find a substantially reduced residual mass when the projection method is employed. In addition, the large fluctuations in this quantity disappear.Comment: 18 pages, 10 figures, references updated, comments adde

    Multiple Stellar Populations in the Globular Cluster omega Centauri as Tracers of a Merger Event

    Full text link
    The discovery of the Sagittarius dwarf galaxy, which is being tidally disrupted by and merging with the Milky Way, supports the view that the halo of the Galaxy has been built up at least partially by the accretion of similar dwarf systems. The Sagittarius dwarf contains several distinct populations of stars, and includes M54 as its nucleus, which is the second most massive globular cluster associated with the Milky Way. The most massive globular cluster is omega Centauri, and here we report that omega Centauri also has several distinct stellar populations, as traced by red-giant-branch stars. The most metal-rich red-giant-branch stars are about 2 Gyr younger than the dominant metal-poor component, indicating that omega Centauri was enriched over this timescale. The presence of more than one epoch of star formation in a globular cluster is quite surprising, and suggests that omega Centauri was once part of a more massive system that merged with the Milky Way, as the Sagittarius dwarf galaxy is in the process of doing now. Mergers probably were much more frequent in the early history of the Galaxy and omega Centauri appears to be a relict of this era.Comment: 7 pages, 3 figures, Latex+nature.sty (included), To appear in November 4th issue of Natur

    The states of W-class as shared resources for perfect teleportation and superdense coding

    Get PDF
    As we know, the states of triqubit systems have two important classes: GHZ-class and W-class. In this paper, the states of W-class are considered for teleportation and superdense coding, and are generalized to multi-particle systems. First we describe two transformations of the shared resources for teleportation and superdense coding, which allow many new protocols from some known ones for that. As an application of these transformations, we obtain a sufficient and necessary condition for a state of W-class being suitable for perfect teleportation and superdense coding. As another application, we find that state ∣W>123=1/2(∣100>123+∣010>123+2∣001>123)|W>_{123}={1/2}(|100>_{123}+|010>_{123}+\sqrt{2}|001>_{123}) can be used to transmit three classical bits by sending two qubits, which was considered to be impossible by P. Agrawal and A. Pati [Phys. Rev. A to be published]. We generalize the states of W-class to multi-qubit systems and multi-particle systems with higher dimension. We propose two protocols for teleportation and superdense coding by using W-states of multi-qubit systems that generalize the protocols by using ∣W>123|W>_{123} proposed by P. Agrawal and A. Pati. We obtain an optimal way to partition some W-states of multi-qubit systems into two subsystems, such that the entanglement between them achieves maximum value.Comment: 10 pages, critical comments and suggestions are welcom

    Optical study on doped polyaniline composite films

    Full text link
    Localization driven by disorder has a strong influence on the conducting property of conducting polymer. A class of authors hold the opinion that disorder in the material is homogeneous and conducting polymer is disordered metal close to Anderson-Mott Metal-Insulator transition, while others treat the disorder as inhomogeneous and have the conclusion that conducting polymer is a composite of ordered metallic regions and disordered insulating regions. The morphology of conducting polymers is an important factor that have influence on the type and extent of disorder. Different protonic acids used as dopants and moisture have affection on polymer chain arrangement and interchain interactions. A PANI-CSA film, two PANI-CSA/PANI-DBSA composite films with different dopants ratio, and one of the composite films with different moisture content are studied. Absolute reflectivity measurements are performed on the films. Optical conductivity and the real part of dielectric function are calculated by Kramers-Kronig(KK) relations. σ1(ω)\sigma_1(\omega) and Ï”1(ω)\epsilon_1(\omega) derivate from simple Drude model in low frequency range and tendencies of the three sample are different and non-monotonic. The Localization Modified Drude model(LMD) in the framework of Anderson-Mott theory can not give a good fit to the experimental data. By introducing a distribution of relaxation time into LMD, reasonable fits for all three samples are obtained. This result supports the inhomogeneous picture.Comment: 6 figures, 7 page

    Quantum teleportation via a W state

    Full text link
    We investigate two schemes of the quantum teleportation with a WW state, which belongs to a different class from a Greenberger-Horne-Zeilinger class. In the first scheme, the WW state is shared by three parties one of whom, called a sender, performs a Bell measurement. It is shown that quantum information of an unknown state is split between two parties and recovered with a certain probability. In the second scheme, a sender takes two particles of the WW state and performs positive operator valued measurements in two ways. For two schemes, we calculate the success probability and the average fidelity. We show that the average fidelity of the second scheme cannot exceed that of the first one.Comment: 7 pages, 1 figur

    Limits on Interactions between Weakly Interacting Massive Particles and Nucleons Obtained with NaI(Tl) crystal Detectors

    Full text link
    Limits on the cross section for weakly interacting massive particles (WIMPs) scattering off nucleons in the NaI(Tl) detectors at the Yangyang Underground Laboratory are obtained with a 2967.4 kg*day data exposure. Nuclei recoiling are identified by the pulse shape of scintillating photon signals. Data are consistent with no nuclear recoil hypothesis, and 90% confidence level upper limits are set. These limits partially exclude the DAMA/LIBRA region of WIMP-sodium interaction with the same NaI(Tl) target detector. This 90% confidence level upper limit on WIMP-nucleon spin-independent cross section is 3.26*10^-4 pb for a WIMP mass at 10 GeV/c^2
    • 

    corecore