1,151 research outputs found

    Identification problems of muon and electron events in the Super-Kamiokande detector

    Get PDF
    In the measurement of atmospheric nu_e and nu_mu fluxes, the calculations of the Super Kamiokande group for the distinction between muon-like and electronlike events observed in the water Cerenkov detector have initially assumed a misidentification probability of less than 1 % and later 2 % for the sub-GeV range. In the multi-GeV range, they compared only the observed behaviors of ring patterns of muon and electron events, and claimed a 3 % mis-identification. However, the expressions and the calculation method do not include the fluctuation properties due to the stochastic nature of the processes which determine the expected number of photoelectrons (p.e.) produced by muons and electrons. Our full Monte Carlo (MC) simulations including the fluctuations of photoelectron production show that the total mis-identification rate for electrons and muons should be larger than or equal to 20 % for sub-GeV region. Even in the multi-GeV region we expect a mis-identification rate of several % based on our MC simulations taking into account the ring patterns. The mis-identified events are mostly of muonic origin.Comment: 17 pages, 12 figure

    First isolation of Dysgonomonas mossii from intestinal juice of a patient with pancreatic cancer

    Get PDF
    ArticleARCHIVES OF MEDICAL RESEARCH. 37(7): 914-916 (2006)journal articl

    Neutral-Current Atmospheric Neutrino Flux Measurement Using Neutrino-Proton Elastic Scattering in Super-Kamiokande

    Get PDF
    Recent results show that atmospheric νμ\nu_\mu oscillate with δm23×103\delta m^2 \simeq 3 \times 10^{-3} eV2^2 and sin22θatm1\sin^2{2\theta_{atm}} \simeq 1, and that conversion into νe\nu_e is strongly disfavored. The Super-Kamiokande (SK) collaboration, using a combination of three techniques, reports that their data favor νμντ\nu_\mu \to \nu_\tau over νμνsterile\nu_\mu \to \nu_{sterile}. This distinction is extremely important for both four-neutrino models and cosmology. We propose that neutrino-proton elastic scattering (ν+pν+p\nu + p \to \nu + p) in water \v{C}erenkov detectors can also distinguish between active and sterile oscillations. This was not previously recognized as a useful channel since only about 2% of struck protons are above the \v{C}erenkov threshold. Nevertheless, in the present SK data there should be about 40 identifiable events. We show that these events have unique particle identification characteristics, point in the direction of the incoming neutrinos, and correspond to a narrow range of neutrino energies (1-3 GeV, oscillating near the horizon). This channel will be particularly important in Hyper-Kamiokande, with 40\sim 40 times higher rate. Our results have other important applications. First, for a similarly small fraction of atmospheric neutrino quasielastic events, the proton is relativistic. This uniquely selects νμ\nu_\mu (not νˉμ\bar{\nu}_\mu) events, useful for understanding matter effects, and allows determination of the neutrino energy and direction, useful for the L/EL/E dependence of oscillations. Second, using accelerator neutrinos, both elastic and quasielastic events with relativistic protons can be seen in the K2K 1-kton near detector and MiniBooNE.Comment: 10 pages RevTeX, 8 figure

    Effect of a magnetic field on the spin- and charge-density wave order in La1.45Nd0.4Sr0.15CuO4

    Full text link
    The spin-density wave (SDW) and charge-density wave (CDW) order in superconducting La1.45Nd0.4Sr0.15CuO4 were studied under an applied magnetic field using neutron and X-ray diffraction techniques. In zero field, incommensurate (IC) SDW order appears below ~ 40 K, which is characterized by neutron diffraction peaks at (1/2 +/- 0.134, 1/2 +/- 0.134, 0). The intensity of these IC peaks increases rapidly below T_Nd ~ 8 K due to an ordering of the Nd^3+ spins. The application of a 1 T magnetic field parallel to the c-axis markedly diminishes the intensity below T_Nd, while only a slight decrease in intensity is observed at higher temperatures for fields up to 7 T. Our interpretation is that the c-axis field suppresses the parasitic Nd^3+ spin order at the incommensurate wave vector without disturbing the stripe order of Cu^2+ spins. Consistent with this picture, the CDW order, which appears below 60 K, shows no change for magnetic fields up to 4 T. These results stand in contrast to the significant field-induced enhancement of the SDW order observed in superconducting La2-xSrxCuO4 with x ~ 0.12 and stage-4 La2CuO4+y. The differences can be understood in terms of the relative volume fraction exhibiting stripe order in zero field, and the collective results are consistent with the idea that suppression of superconductivity by vortices nucleates local patches of stripe order.Comment: 7 pages, 5 figure

    Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping

    Full text link
    We address one of the main challenges to TiO2-photocatalysis, namely band gap narrowing, by combining nanostructural changes with doping. With this aim we compare TiO2's electronic properties for small 0D clusters, 1D nanorods and nanotubes, 2D layers, and 3D surface and bulk phases using different approximations within density functional theory and GW calculations. In particular, we propose very small (R < 0.5 nm) but surprisingly stable nanotubes with promising properties. The nanotubes are initially formed from TiO2 layers with the PtO2 structure, with the smallest (2,2) nanotube relaxing to a rutile nanorod structure. We find that quantum confinement effects - as expected - generally lead to a widening of the energy gap. However, substitutional doping with boron or nitrogen is found to give rise to (meta-)stable structures and the introduction of dopant and mid-gap states which effectively reduce the band gap. Boron is seen to always give rise to n-type doping while depending on the local bonding geometry, nitrogen may give rise to n-type or p-type doping. For under coordinated TiO2 surface structures found in clusters, nanorods, nanotubes, layers and surfaces nitrogen gives rise to acceptor states while for larger clusters and bulk structures donor states are introduced

    Synthesis of titanate nanostructures using amorphous precursor material and their adsorption/photocatalytic properties

    Full text link
    This paper reports on a new and swift hydrothermal chemical route to prepare titanate nanostructures (TNS) avoiding the use of crystalline TiO2 as starting material. The synthesis approach uses a commercial solution of TiCl3 as titanium source to prepare an amorphous precursor, circumventing the use of hazardous chemical compounds. The influence of the reaction temperature and dwell autoclave time on the structure and morphology of the synthesised materials was studied. Homogeneous titanate nanotubes with a high length/diameter aspect ratio were synthesised at 160^{\circ}C and 24 h. A band gap of 3.06\pm0.03 eV was determined for the TNS samples prepared in these experimental conditions. This value is red shifted by 0.14 eV compared to the band gap value usually reported for the TiO2 anatase. Moreover, such samples show better adsorption capacity and photocatalytic performance on the dye rhodamine 6G (R6G) photodegradation process than TiO2 nanoparticles. A 98% reduction of the R6G concentration was achieved after 45 minutes of irradiation of a 10 ppm dye aqueous solution and 1 g/L of TNS catalyst.Comment: 29 pages, 10 figures, accepted for publication in Journal of Materials Scienc
    corecore