165 research outputs found

    Accurate Modelling of Left-Handed Metamaterials Using Finite-Difference Time-Domain Method with Spatial Averaging at the Boundaries

    Full text link
    The accuracy of finite-difference time-domain (FDTD) modelling of left-handed metamaterials (LHMs) is dramatically improved by using an averaging technique along the boundaries of LHM slabs. The material frequency dispersion of LHMs is taken into account using auxiliary differential equation (ADE) based dispersive FDTD methods. The dispersive FDTD method with averaged permittivity along the material boundaries is implemented for a two-dimensional (2-D) transverse electric (TE) case. A mismatch between analytical and numerical material parameters (e.g. permittivity and permeability) introduced by the time discretisation in FDTD is demonstrated. The expression of numerical permittivity is formulated and it is suggested to use corrected permittivity in FDTD simulations in order to model LHM slabs with their desired parameters. The influence of switching time of source on the oscillation of field intensity is analysed. It is shown that there exists an optimum value which leads to fast convergence in simulations.Comment: 17 pages, 7 figures, submitted to Journal of Optics A Nanometa special issu

    Development and irradiation test of lost alpha detection system for ITER

    Get PDF
    We developed a lost alpha detection system to use in burning plasma experiments. The scintillators of Ag:ZnS and polycrystalline Ce:YAG were designed for a high-temperature environment, and the optical transmission line was designed to transmit from the scintillator to the port plug. The required optical components of lenses and mirrors were irradiated using the fission reactor with the initial result that there was no clear change after the irradiation with a neutron flux of 9.6×1017?nm?2?s?1 for 48 h. We propose a diagnostic of alpha particle loss, so-called alpha particle induced gamma ray spectroscopy. The initial laboratory test has been carried out by the use of the Ce doped Lu2SiO5 scintillator detector and an Am?Be source to detect the 4.44 MeV high energy gamma ray due to the 9Be(α,nγ)12C reaction

    Phase diagrams in the Hadron-PNJL model

    Full text link
    The two-Equation of State (Two-EoS) model is used to describe the hadron-quark phase transition in dense-hot matter formed in heavy-ion collisions. The non-linear Walecka model is used to describe the hadronic phase. For the quark phase, the Nambu--Jona-Lasinio model coupled to Polyakov-Loop fields (PNJL) is used to include both the chiral and (de)confinement dynamics. The phase diagrams are derived from the Gibbs conditions and compared with the results obtained in the Hadron-NJL model without confinement. As in the Hadron-NJL case a first order transition is observed, but with a Critical-End-Point at much higher temperature, consequence of the confinement mechanism that reduces the degrees of freedom of the quark matter in proximity of the phase transition. Particular attention is devoted to the phase transition in isospin asymmetric matter. Interesting isospin effects are found at high baryon density and reduced temperatures, in fact common also to other quark models, like MIT-Bag and NJL model. Some possible observation signals are suggested to probe in Heavy-Ion Collision (HIC) experiments at intermediate energies.Comment: 11 pages, 10 figures (revtex4

    Eight-quark interactions as a chiral thermometer

    Full text link
    A NJL Lagrangian extended to six and eight quark interactions is applied to study temperature effects (SU(3) flavor limit, massless case), and (realistic massive case). The transition temperature can be considerably reduced as compared to the standard approach, in accordance with recent lattice calculations. The mesonic spectra built on the spontaneously broken vacuum induced by the 't Hooft interaction strength, as opposed to the commonly considered case driven by the four-quark coupling, undergoes a rapid crossover to the unbroken phase, with a slope and at a temperature which is regulated by the strength of the OZI violating eight-quark interactions. This strength can be adjusted in consonance with the four-quark coupling and leaves the spectra unchanged, except for the sigma meson mass, which decreases. A first order transition behavior is also a possible solution within the present approach.Comment: 4 pages, 4 figures, prepared for the proceedings of Quark Matter 2008 - 20th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions, February 4-10, Jaipur (India

    Equation of state in the PNJL model with the entanglement interaction

    Full text link
    The equation of state and the phase diagram in two-flavor QCD are investigated by the Polyakov-loop extended Nambu--Jona-Lasinio (PNJL) model with an entanglement vertex between the chiral condensate and the Polyakov-loop. The entanglement-PNJL (EPNJL) model reproduces LQCD data at zero and finite chemical potential better than the PNJL model. Hadronic degrees of freedom are taken into account by the free-hadron-gas (FHG) model with the volume-exclusion effect due to the hadron generation. The EPNJL+FHG model improves agreement of the EPNJL model with LQCD data particularly at small temperature. The quarkyonic phase survives, even if the correlation between the chiral condensate and the Polyakov loop is strong and hadron degrees of freedom are taken into account. However, the location of the quarkyonic phase is sensitive to the strength of the volume exclusion.Comment: 9 pages, 7 figure

    Effect of Dynamical SU(2) Gluons to the Gap Equation of Nambu--Jona-Lasinio Model in Constant Background Magnetic Field

    Get PDF
    In order to estimate the effect of dynamical gluons to chiral condensate, the gap equation of SU(2) gauged Nambu--Jona-Lasinio model, under a constant background magnetic field, is investigated up to the two-loop order in 2+1 and 3+1 dimensions. We set up a general formulation allowing both cases of electric as well as magnetic background field. We rely on the proper time method to maintain gauge invariance. In 3+1 dimensions chiral symmetry breaking (χ\chiSB) is enhanced by gluons even in zero background magnetic field and becomes much striking as the background field grows larger. In 2+1 dimensions gluons also enhance χ\chiSB but whose dependence on the background field is not simple: dynamical mass is not a monotone function of background field for a fixed four-fermi coupling.Comment: 20 pages, 5 figure

    New Gauge Invariant Formulation of the Chern-Simons Gauge Theory

    Get PDF
    A new gauge invariant formulation of the relativistic scalar field interacting with Chern-Simons gauge fields is considered. This formulation is consistent with the gauge fixed formulation. Furthermore we find that canonical (Noether) Poincar\'e generators are not gauge invariant even on the constraints surface and do not satisfy the (classical) Poincar\'e algebra. It is the improved generators, constructed from the symmetric energy-momentum tensor, which are (manifestly) gauge invariant and obey the classical Poincar\'e algebra.Comment: Shortened, to appear as Papid Communication-PRD/Nov/9
    corecore