641 research outputs found
Discontinuous percolation transitions in real physical systems
We study discontinuous percolation transitions (PT) in the diffusion-limited
cluster aggregation model of the sol-gel transition as an example of real
physical systems, in which the number of aggregation events is regarded as the
number of bonds occupied in the system. When particles are Brownian, in which
cluster velocity depends on cluster size as with
, a larger cluster has less probability to collide with other
clusters because of its smaller mobility. Thus, the cluster is effectively more
suppressed in growth of its size. Then the giant cluster size increases
drastically by merging those suppressed clusters near the percolation
threshold, exhibiting a discontinuous PT. We also study the tricritical
behavior by controlling the parameter , and the tricritical point is
determined by introducing an asymmetric Smoluchowski equation.Comment: 5 pages, 5 figure
Harvesting dissipated energy with a mesoscopic ratchet.
The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced.The ERC Advanced Grant 228273 is acknowledged.This is the author accepted manuscript. The final version is available from NPG at http://www.nature.com/ncomms/2015/150401/ncomms7738/abs/ncomms7738.html
Spin Gap in a Doped Kondo Chain
We show that the Kondo chain away from half-filling has a spin gap upon the
introduction of an additional direct Heisenberg coupling between localized
spins. This is understood in the weak-Kondo-coupling limit of the
Heisenberg-Kondo lattice model by bosonization and in the strong-coupling limit
by a mapping to a modified t-J model. Only for certain ranges of filling and
Heisenberg coupling does the spin gap phase extend from weak to strong
coupling.Comment: 4 pages RevTeX including 4 eps figures; minor corrections and
clarification
Size segregation and convection
The size segregation of granular materials in a vibrating container is
investigated using Molecular Dynamics. We find that the rising of larger
particles is accompanied by the existence of convection cells even in the case
of the lowest possible frequencies. The convection can, however, also be
triggered by the larger particle itself. The possibility of rising through this
mechanism strongly depends on the depth of the larger particle.Comment: 7 pages, 4 figure
Ferromagnetism in the Strong Hybridization Regime of the Periodic Anderson Model
We determine exactly the ground state of the one-dimensional periodic
Anderson model (PAM) in the strong hybridization regime. In this regime, the
low energy sector of the PAM maps into an effective Hamiltonian that has a
ferromagnetic ground state for any electron density between half and three
quarters filling. This rigorous result proves the existence of a new magnetic
state that was excluded in the previous analysis of the mixed valence systems.Comment: Accepted in Phys. Rev.
Turbulence in a free surface
We report an experimental and numerical study of turbulent fluid motion in a
free surface. The flow is realized experimentally on the surface of a tank
filled with water stirred by a vertically oscillating grid positioned well
below the surface. Particles floating on the surface are used to visualize the
flow. The effect of surface waves appears to be negligible. The flow is
unconventional in that it is confined to two dimensions but does not have
squared vorticity as a conservation law, that it is not divergence free and
that it inherits scaling features of the mean square velocity differences
S_2(R) and the vorticity fluctuations Omega(R) from the bulk 3-d turbulence.Comment: 4 pages, 4 Postscript figure
Size Segregation and Convection of Granular Mixtures Almost Completely Packed in the Rotating Thin Box
Size segregation of granular mixtures which are almost completely packed in a
rotating drum is discussed with an effective simulation and a brief analysis.
Instead of a 3D drum, we simulate 2D rotating thin box which is almost
completely packed with granular mixtures. The phase inversion of radially
segregated pattern which was found in a 3D experiment are qualitatively
reproduced with this simulation, and a brief analysis is followed. Moreover in
our simulation, a global convection appears after radial segregation pattern is
formed, and this convection induces axially segregated pattern.Comment: 9 pages, 5 figures, PACS number(s): 45.70.-n, 45.70.M
33356 A multinational chart review to examine gastrointestinal symptoms and their management in patients treated with apremilast for plaque psoriasis
Background: Diarrhea and nausea are the most common adverse events observed in phase 3 clinical trials and real-world studies of apremilast, an oral phosphodiesterase-4 inhibitor indicated for moderate-to-severe plaque psoriasis.
Methods: A retrospective chart review was conducted between June and November 2020 in the United States (US) and France among patients with moderate psoriasis experiencing gastrointestinal (GI) symptoms within 3 months of initiating apremilast.
Results: Dermatologists in US (200) and in France (52) abstracted patient charts (US: 494, France: 128). The following GI symptoms were reported: ‒diarrhea (US: 67% [331/494]; France: 76% [97/128]) with median time from onset to resolution/improvement of 26 days (US) and 21 days (France) ‒nausea (US: 52% [255/494]; France: 34% [44/128]) with median time from onset to resolution/improvement of 21 days (US) and 24 days (France). Management strategies for diarrhea included pharmacologic (loperamide/bismuth subsalicylate/racecadotril) with or without nonpharmacologic (dietary modifications, taking with food)/fiber (US: 30% [99/331], France: 41% [40/97]) and nonpharmacologic only (US: 32% [105/331], France: 27% [26/97]). Management strategies for nausea included pharmacologic (diphenhydramine/metoclopramide/metopimazine) with or without nonpharmacologic (dietary modifications, taking with food, avoidance of vigorous activity) (US: 5% [14/255], France: 30% [13/44]) and nonpharmacologic only (US: 58% [147/255], France: 36% [16/44]). Resolution/improvement of GI symptoms was observed in patients who used pharmacologic strategies and nonpharmacologic strategies.
Conclusions: Recommendations to manage diarrhea and nausea after apremilast initiation with pharmacologic or non-pharmacologic strategies were effective and symptoms usually resolved within 3-4 weeks of onset
CORE and the Haldane Conjecture
The Contractor Renormalization group formalism (CORE) is a real-space
renormalization group method which is the Hamiltonian analogue of the Wilson
exact renormalization group equations. In an earlier paper\cite{QGAF} I showed
that the Contractor Renormalization group (CORE) method could be used to map a
theory of free quarks, and quarks interacting with gluons, into a generalized
frustrated Heisenberg antiferromagnet (HAF) and proposed using CORE methods to
study these theories. Since generalizations of HAF's exhibit all sorts of
subtle behavior which, from a continuum point of view, are related to
topological properties of the theory, it is important to know that CORE can be
used to extract this physics. In this paper I show that despite the folklore
which asserts that all real-space renormalization group schemes are necessarily
inaccurate, simple Contractor Renormalization group (CORE) computations can
give highly accurate results even if one only keeps a small number of states
per block and a few terms in the cluster expansion. In addition I argue that
even very simple CORE computations give a much better qualitative understanding
of the physics than naive renormalization group methods. In particular I show
that the simplest CORE computation yields a first principles understanding of
how the famous Haldane conjecture works for the case of the spin-1/2 and spin-1
HAF.Comment: 36 pages, 4 figures, 5 tables, latex; extensive additions to conten
Influence of Hydrodynamic Interactions on the Kinetics of Colloidal Particle's Adsorption
The kinetics of irreversible adsorption of spherical particles onto a flat
surface is theoretically studied. Previous models, in which hydrodynamic
interactions were disregarded, predicted a power-law behavior for
the time dependence of the coverage of the surface near saturation.
Experiments, however, are in agreement with a power-law behavior of the form
. We outline that, when hydrodynamic interactions are considered, the
assymptotic behavior is found to be compatible with the experimental results in
a wide region near saturation.Comment: 4 pages, 1 figures, Phys. Rev. Lett. (in press
- …