639 research outputs found

    Discontinuous percolation transitions in real physical systems

    Full text link
    We study discontinuous percolation transitions (PT) in the diffusion-limited cluster aggregation model of the sol-gel transition as an example of real physical systems, in which the number of aggregation events is regarded as the number of bonds occupied in the system. When particles are Brownian, in which cluster velocity depends on cluster size as vssηv_s \sim s^{\eta} with η=0.5\eta=-0.5, a larger cluster has less probability to collide with other clusters because of its smaller mobility. Thus, the cluster is effectively more suppressed in growth of its size. Then the giant cluster size increases drastically by merging those suppressed clusters near the percolation threshold, exhibiting a discontinuous PT. We also study the tricritical behavior by controlling the parameter η\eta, and the tricritical point is determined by introducing an asymmetric Smoluchowski equation.Comment: 5 pages, 5 figure

    Harvesting dissipated energy with a mesoscopic ratchet.

    Get PDF
    The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced.The ERC Advanced Grant 228273 is acknowledged.This is the author accepted manuscript. The final version is available from NPG at http://www.nature.com/ncomms/2015/150401/ncomms7738/abs/ncomms7738.html

    Spin Gap in a Doped Kondo Chain

    Full text link
    We show that the Kondo chain away from half-filling has a spin gap upon the introduction of an additional direct Heisenberg coupling between localized spins. This is understood in the weak-Kondo-coupling limit of the Heisenberg-Kondo lattice model by bosonization and in the strong-coupling limit by a mapping to a modified t-J model. Only for certain ranges of filling and Heisenberg coupling does the spin gap phase extend from weak to strong coupling.Comment: 4 pages RevTeX including 4 eps figures; minor corrections and clarification

    Size segregation and convection

    Full text link
    The size segregation of granular materials in a vibrating container is investigated using Molecular Dynamics. We find that the rising of larger particles is accompanied by the existence of convection cells even in the case of the lowest possible frequencies. The convection can, however, also be triggered by the larger particle itself. The possibility of rising through this mechanism strongly depends on the depth of the larger particle.Comment: 7 pages, 4 figure

    Ferromagnetism in the Strong Hybridization Regime of the Periodic Anderson Model

    Full text link
    We determine exactly the ground state of the one-dimensional periodic Anderson model (PAM) in the strong hybridization regime. In this regime, the low energy sector of the PAM maps into an effective Hamiltonian that has a ferromagnetic ground state for any electron density between half and three quarters filling. This rigorous result proves the existence of a new magnetic state that was excluded in the previous analysis of the mixed valence systems.Comment: Accepted in Phys. Rev.

    Turbulence in a free surface

    Full text link
    We report an experimental and numerical study of turbulent fluid motion in a free surface. The flow is realized experimentally on the surface of a tank filled with water stirred by a vertically oscillating grid positioned well below the surface. Particles floating on the surface are used to visualize the flow. The effect of surface waves appears to be negligible. The flow is unconventional in that it is confined to two dimensions but does not have squared vorticity as a conservation law, that it is not divergence free and that it inherits scaling features of the mean square velocity differences S_2(R) and the vorticity fluctuations Omega(R) from the bulk 3-d turbulence.Comment: 4 pages, 4 Postscript figure

    Size Segregation and Convection of Granular Mixtures Almost Completely Packed in the Rotating Thin Box

    Full text link
    Size segregation of granular mixtures which are almost completely packed in a rotating drum is discussed with an effective simulation and a brief analysis. Instead of a 3D drum, we simulate 2D rotating thin box which is almost completely packed with granular mixtures. The phase inversion of radially segregated pattern which was found in a 3D experiment are qualitatively reproduced with this simulation, and a brief analysis is followed. Moreover in our simulation, a global convection appears after radial segregation pattern is formed, and this convection induces axially segregated pattern.Comment: 9 pages, 5 figures, PACS number(s): 45.70.-n, 45.70.M

    33356 A multinational chart review to examine gastrointestinal symptoms and their management in patients treated with apremilast for plaque psoriasis

    Get PDF
    Background: Diarrhea and nausea are the most common adverse events observed in phase 3 clinical trials and real-world studies of apremilast, an oral phosphodiesterase-4 inhibitor indicated for moderate-to-severe plaque psoriasis. Methods: A retrospective chart review was conducted between June and November 2020 in the United States (US) and France among patients with moderate psoriasis experiencing gastrointestinal (GI) symptoms within 3 months of initiating apremilast. Results: Dermatologists in US (200) and in France (52) abstracted patient charts (US: 494, France: 128). The following GI symptoms were reported: ‒diarrhea (US: 67% [331/494]; France: 76% [97/128]) with median time from onset to resolution/improvement of 26 days (US) and 21 days (France) ‒nausea (US: 52% [255/494]; France: 34% [44/128]) with median time from onset to resolution/improvement of 21 days (US) and 24 days (France). Management strategies for diarrhea included pharmacologic (loperamide/bismuth subsalicylate/racecadotril) with or without nonpharmacologic (dietary modifications, taking with food)/fiber (US: 30% [99/331], France: 41% [40/97]) and nonpharmacologic only (US: 32% [105/331], France: 27% [26/97]). Management strategies for nausea included pharmacologic (diphenhydramine/metoclopramide/metopimazine) with or without nonpharmacologic (dietary modifications, taking with food, avoidance of vigorous activity) (US: 5% [14/255], France: 30% [13/44]) and nonpharmacologic only (US: 58% [147/255], France: 36% [16/44]). Resolution/improvement of GI symptoms was observed in patients who used pharmacologic strategies and nonpharmacologic strategies. Conclusions: Recommendations to manage diarrhea and nausea after apremilast initiation with pharmacologic or non-pharmacologic strategies were effective and symptoms usually resolved within 3-4 weeks of onset

    CORE and the Haldane Conjecture

    Get PDF
    The Contractor Renormalization group formalism (CORE) is a real-space renormalization group method which is the Hamiltonian analogue of the Wilson exact renormalization group equations. In an earlier paper\cite{QGAF} I showed that the Contractor Renormalization group (CORE) method could be used to map a theory of free quarks, and quarks interacting with gluons, into a generalized frustrated Heisenberg antiferromagnet (HAF) and proposed using CORE methods to study these theories. Since generalizations of HAF's exhibit all sorts of subtle behavior which, from a continuum point of view, are related to topological properties of the theory, it is important to know that CORE can be used to extract this physics. In this paper I show that despite the folklore which asserts that all real-space renormalization group schemes are necessarily inaccurate, simple Contractor Renormalization group (CORE) computations can give highly accurate results even if one only keeps a small number of states per block and a few terms in the cluster expansion. In addition I argue that even very simple CORE computations give a much better qualitative understanding of the physics than naive renormalization group methods. In particular I show that the simplest CORE computation yields a first principles understanding of how the famous Haldane conjecture works for the case of the spin-1/2 and spin-1 HAF.Comment: 36 pages, 4 figures, 5 tables, latex; extensive additions to conten

    Influence of Hydrodynamic Interactions on the Kinetics of Colloidal Particle's Adsorption

    Full text link
    The kinetics of irreversible adsorption of spherical particles onto a flat surface is theoretically studied. Previous models, in which hydrodynamic interactions were disregarded, predicted a power-law behavior t2/3t^{-2/3} for the time dependence of the coverage of the surface near saturation. Experiments, however, are in agreement with a power-law behavior of the form t1/2t^{-1/2}. We outline that, when hydrodynamic interactions are considered, the assymptotic behavior is found to be compatible with the experimental results in a wide region near saturation.Comment: 4 pages, 1 figures, Phys. Rev. Lett. (in press
    corecore